PERIODIC-SOLUTION OF THE LORENTZ EQUATION IN THE HIGH RAYLEIGH NUMBER LIMIT

被引:9
作者
SHIMIZU, T
机构
[1] Theoretische Festkörperphysik, Technische Hochschule Darmstadt
关键词
D O I
10.1016/0375-9601(79)90065-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A periodic solution, which the Lorenz equation has in the limit of high Rayleigh number r, is calculated up to the first order in ε{lunate}= 1 (r-1) 1 2 by using the perturbation theory of nonlinear oscillations. © 1979.
引用
收藏
页码:319 / 322
页数:4
相关论文
共 14 条
[1]  
Bogoliubov N. N., 1961, ASYMPTOTIC METHODS T
[2]  
HAKEN H, 1978, SYNERGETICS INTRO, pCH12
[3]  
JORDAN DW, 1977, NONLINEAR ORDINARY D, P140
[4]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[5]  
2
[6]  
LOSCH F, 1960, JANKE EMDE LOSCH TAB
[7]   C-SYSTEM-LIKE PROPERTY OF LORENTZ SYSTEM [J].
NAGASHIMA, T ;
SHIMADA, I .
PROGRESS OF THEORETICAL PHYSICS, 1977, 58 (04) :1318-1320
[8]  
NAGASHIMA T, 1978, PROGR THEOR PHYS, V59, P1033
[9]  
Rossler O. E., 1977, SYNERGETICS WORKSHOP, P184
[10]   TRANSIENT-BEHAVIOR IN PERIODIC REGIONS OF LORENTZ MODEL [J].
SHIMIZU, T ;
MORIOKA, N .
PHYSICS LETTERS A, 1978, 69 (03) :148-150