LAST OF THE FIBONACCI GROUPS

被引:9
作者
HAVAS, G [1 ]
RICHARDSON, JS [1 ]
STERLING, LS [1 ]
机构
[1] UNIV MELBOURNE,DEPT MATH,PARKVILLE 3052,VICTORIA,AUSTRALIA
关键词
D O I
10.1017/S0308210500011513
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
All the Fibonacci groups in the family F(2, n) have been either fully identified or determined to be infinite, bar one, namely F(2, 9). Using computer-aided techniques it is shown that F(2, 9) has a quotient of order 152.5741, and an explicit matrix representation for a quotient of order 152. 518 is given. This strongly suggests that F(2, 9) is infinite, but no proof of such a claim is available. © 1979, Royal Society of Edinburgh. All rights reserved.
引用
收藏
页码:199 / 203
页数:5
相关论文
共 12 条
[1]  
BRUNNER AM, 1974, B AUSTR MATH SOC, V11, P11
[2]  
CANNON JJ, 1973, MATH COMPUT, V27, P463, DOI 10.1090/S0025-5718-1973-0335610-5
[3]  
CANNON JJ, 1976, 1976 P ACM S SYMB AL, P66
[4]   FIBONACCI GROUPS .2. [J].
CHALK, CP ;
JOHNSON, DL .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1977, 77 :79-86
[5]  
Conway J., 1965, AM MATH MON, V72, P915
[6]   REPRESENTATIONS OF DIRECT PRODUCTS OF FINITE GROUPS [J].
FEIN, B .
PACIFIC JOURNAL OF MATHEMATICS, 1967, 20 (01) :45-&
[7]  
Havas G., 1976, Bulletin of the Australian Mathematical Society, V15, P297, DOI 10.1017/S0004972700022668
[8]  
HAVAS G, LECTURE NOTES COMPUT
[9]  
HAVAS G, 1974, LECT NOTES MATH, V372, P347
[10]  
JOHNSON DL, 1974, P LOND MATH SOC, V29, P577