REPRESENTATIONS OF AFFINE KAC-MOODY ALGEBRAS, BOSONIZATION AND RESOLUTIONS

被引:71
作者
FEIGIN, BL
FRENKEL, EV
机构
[1] Moscow, 117218, Profsoyuznaya street, 13/12
[2] Kolomna, Moscow district, 140410, Suvorova street, 100
关键词
AMS subject classification (1980): 22Exx;
D O I
10.1007/BF00429950
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study boson representations of the affine Kac-Moody algebras and give an explicit description of primary fields and intertwining operators, using vertex operators. We establish the resolution of the irreducible module, consisting of boson representations, and point out the connection with Virasoro algebra. All these give new bosonization procedures for Wess-Zumino-Witten (WZW) models and mathematical backgrounds for the integral representation of correlation functions in WZW models on the plane and on the torus. © 1990 Kluwer Academic Publishers.
引用
收藏
页码:307 / 317
页数:11
相关论文
共 31 条
[1]  
Bernstein I.N., 1973, RUSS MATH SURV, V28, P1, DOI 10.1070/RM1973v028n03ABEH001557
[2]  
BERNSTEIN J, 1976, LIE GROUPS THEIR REP, P39
[3]  
BERSHADSKY M, IASSNSHEP8909 PREPR
[4]  
BERSHADSKY MA, 1985, PHYS LETT B, V151
[5]   HOMOGENEOUS VECTOR BUNDLES [J].
BOTT, R .
ANNALS OF MATHEMATICS, 1957, 66 (02) :203-248
[6]   THE 4-POINT CORRELATIONS OF ALL PRIMARY OPERATORS OF THE D=2 CONFORMALLY INVARIANT SU(2) SIGMA-MODEL WITH WESS-ZUMINO TERM [J].
CHRISTE, P ;
FLUME, R .
NUCLEAR PHYSICS B, 1987, 282 (02) :466-494
[7]  
Date E., 1982, PUBL RES I MATH SCI, V18, P1077
[8]  
DOBREV VK, 1985, ICTP IC8513 PREPR
[9]   CONFORMAL ALGEBRA AND MULTIPOINT CORRELATION-FUNCTIONS IN 2D STATISTICAL-MODELS [J].
DOTSENKO, VS ;
FATEEV, VA .
NUCLEAR PHYSICS B, 1984, 240 (03) :312-348
[10]  
DRINFELD VG, 1981, DOKL AKAD NAUK SSSR+, V258, P11