LEXICOGRAPHIC OPTIMALITY IN THE MULTIPLE OBJECTIVE LINEAR-PROGRAMMING - THE NUCLEOLAR SOLUTION

被引:40
作者
MARCHI, E
OVIEDO, JA
机构
[1] Instituto de Matemática Aplicada San Luis, Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, 5700 San Luis
关键词
MULTIPLE OBJECTIVE LINEAR PROGRAMMING; LEXICOGRAPHIC ORDER; NUCLEOLAR SOLUTION; ALGORITHM;
D O I
10.1016/0377-2217(92)90347-C
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we study the problem of multiple objective linear programming (MOLP). We introduce a new solution concept which is related to that of the nucleolus of n-person cooperative game theory. We prove that a general MOLP problem always has a solution in the new sense. The points in the nucleolus are efficient in the classic way. We prove existence and at the same time we introduce a constructing algorithm for computing it.
引用
收藏
页码:355 / 359
页数:5
相关论文
共 12 条
  • [1] LEXICOGRAPHIC ORDERS, UTILITIES AND DECISION RULES - SURVEY
    FISHBURN, PC
    [J]. MANAGEMENT SCIENCE SERIES A-THEORY, 1974, 20 (11): : 1442 - 1471
  • [2] ISERMANN H, 1982, OR SPEKTRUM, P223
  • [3] Justman M., 1977, INT J GAME THEORY, V6, P189, DOI 10.1007/BF01764426
  • [4] KHOLBERG E, 1972, SIAM J APPL MATH, V22, P34
  • [5] KHOLBERG E, 1971, SIAM J APPL MATH, V20, P62
  • [6] OWEN G, 1977, INT J GAME THEORY, V6, P249
  • [7] SCHEMEIDLER D, 1969, SIAM J APPL MATH, V17, P1163
  • [8] Stadler W., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P51, DOI 10.1016/0362-546X(80)90036-X
  • [9] STADLER W, 1987, IN PRESS AUG P INT C
  • [10] Steuer R., 1986, MULTICRITERIA OPTIMI