The enzyme cyclo-oxygenase catalyses the oxygenation of arachidonic acid, leading to the formation of prostaglandins. Recently two forms of cyclo-oxygenase have been described: a constitutive (COX-1) enzyme present in most cells and tissues, and an inducible (COX-2) isoenzyme observed in many cells in response to pro-inflammatory cytokines. Constitutive and inducible forms of human cyclo-oxygenase (hCOX-1 and hCOX-2) were cloned and expressed in insect cells, utilizing a baculovirus expression system. hCOX-1 had a specific activity of 18.8 mu mol of O-2/mg with a K-m of 13.8 mu M for arachidonate and V-max. of 1500 nmol of O-2/nmol of enzyme, whereas hCOX-2 had a specific activity of 12.2 mu mol of O-2/mg with a K-m of 8.7 mu M for arachidonate and a V-max. of 1090 nmol of O-2/nmol of enzyme. Indomethacin inhibited both hCOX-1 and hCOX-2, whereas NS-398 and Dup-697 selectively inhibited hCOX-2. Both NS-398 and Dup-697 exhibited time-dependent inactivation of hCOX-2, as did indomethacin on both enzymes. The competitive inhibitor of hCOX-1, mefenamic acid, also displayed competitive inhibition of hCOX-2. These results demonstrate the ability to generate selective non-steroidal anti-inflammatory drugs (NSAIDs), which could provide useful improvement therapeutically in the treatment of chronic inflammatory disease.