THE CLASSIFICATION OF FACE-TRANSITIVE PERIODIC 3-DIMENSIONAL TILINGS

被引:34
作者
DRESS, AWM
HUSON, DH
MOLNAR, E
机构
[1] UNIV BIELEFELD,FAK MATH,W-4800 BIELEFELD 1,GERMANY
[2] TECH UNIV BUDAPEST,DEPT GEOMETRY,H-1521 BUDAPEST,HUNGARY
来源
ACTA CRYSTALLOGRAPHICA SECTION A | 1993年 / 49卷
关键词
D O I
10.1107/S010876739300354X
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
It has long been known that there exists an infinite number of types of tile-transitive periodic three-dimensional tilings. Here, it is shown that, by contrast, the number of types of face-transitive periodic three-dimensional tilings is finite. The method of Delaney symbols and the properties of the 219 isomorphism classes of crystallographic space groups are used to find exactly 88 equivariant types that fall into seven topological families.
引用
收藏
页码:806 / 817
页数:12
相关论文
共 27 条
[1]  
Coxeter H.S.M, 1980, GENERATORS RELATIONS
[2]  
COXETER HMS, 1954, P LOND MATH SOC, V4, P471
[3]  
COXETER HSM, 1956, P INT C MATH AMST 19, P155
[4]  
Delaney M. S., 1980, MATCH-COMMUN MATH CO, V9, P73
[5]  
DRESS AWM, 1987, GEOMETRIAE DEDICATA, V24, P295
[7]  
DRESS AWM, 1984, SLN, V1172, P56
[8]  
DRESS AWM, 1984, MITTEILUNGEN MATH SE, V164, P83
[9]  
Dunbar W. D., 1988, REV MAT U COMPLUT MA, V1, P67
[10]   THE CLASSIFICATION OF QUASI-REGULAR POLYHEDRA OF GENUS-2 [J].
FRANZ, R ;
HUSON, D .
DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (04) :347-357