Affinity between blood groups of man and those of anthropoid apes is reflected not only in similarities or identities of reactions of the red cells with many specific typing reagents, but also in overall structures of some of the main blood group systems defined in man and in apes. Besides specificities of human-type, such as A-B-O, M-N, Rh-Hr, I-i, etc. known to be present on the red cells of various species of apes, specific reagents were produced by iso- or cross-immunization of chimpanzees that detect red cell specificities characteristic for apes only. Some of those specificities were found to be shared by several ape species and to fall into separate blood group systems that are counterparts of the human blood group systems. Recently obtained serological, as well as population data, indicate that the chimpanzee R-C-E-F blood group system is the counterpart of the human Rh-Hr system. Similarly to the Rh-Hr system, it is built around a main antigen, the Rc antigen, to which secondary specificities are attached by means of multiple allelic genes. The Rc is not only the principal factor of the chimpanzee R-C-E-F group system, but also constitutes a direct link with the human Rh-Hr blood group system, since anti-Rc reagents also detect Rh0 specificity on the human red cells. Another chimpanzee blood group system, the V-A-B-D system, is counterpart of the M-N-S-s system, and is built around the central antigen Vc. the Vc is not only the principal specificity of the chimpanzee V-A-B-D system, but it also constitutes the direct link with the human M-N-S-s system since anti-Vc reagent gives with chimpanzee red cells reactions parralleling those obtained with anti-N lectin (Nv) while in tests with human red cells it detects specificity identical or closely related to the Mia specificity. © 1979.