MULTIDIMENSIONAL STATISTICAL-ANALYSIS USING ARTIFICIAL NEURAL NETWORKS - ASTRONOMICAL APPLICATIONS

被引:25
作者
SERRARICART, M
CALBET, X
GARRIDO, LS
GAITAN, V
机构
[1] UNIV BARCELONA,IFAE,DEPT ESTRUCTURA & CONSTITUENS MAT,E-08028 BARCELONA,SPAIN
[2] UNIV AUTONOMA BARCELONA,INST FIS ALTES ENERGIES,E-08193 BARCELONA,SPAIN
关键词
D O I
10.1086/116758
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a new method based on artificial neural networks trained with multiseed backpropagation, for displaying an n-dimensional distribution in a projected space of one, two, or three dimensions. As principal component analysis (PCA) the proposed method is useful for extracting information on the structure of the data set, but unlike the PCA the transformation between the original distribution and the projected one is not restricted to be linear. Artificial examples and real astronomical applications are presented in order to show the reliability and potential of the method for the analysis of large astronomical data sets.
引用
收藏
页码:1685 / 1695
页数:11
相关论文
共 34 条
  • [1] ADORF HM, 1988, LARGE SCALE STRUCTUR, P315
  • [2] Adorf HM., 1989, KNOWLEDGE BASED SYST, P215
  • [3] ADAPTIVE OPTICS FOR ARRAY TELESCOPES USING NEURAL-NETWORK TECHNIQUES
    ANGEL, JRP
    WIZINOWICH, P
    LLOYDHART, M
    SANDLER, D
    [J]. NATURE, 1990, 348 (6298) : 221 - 224
  • [4] [Anonymous], 1991, INTRO THEORY NEURAL, DOI DOI 10.1201/9780429499661
  • [5] BALL GH, 1965, RI5 STANF RES I TECH
  • [6] ON A CLASS OF EFFICIENT LEARNING ALGORITHMS FOR NEURAL NETWORKS
    BARMANN, F
    BIEGLERKONIG, F
    [J]. NEURAL NETWORKS, 1992, 5 (01) : 139 - 144
  • [7] BRESSLOFF PC, 1991, GEC-J RES, V8, P151
  • [8] CALBET X, 1992, IN PRESS IAU S, V153
  • [10] DIDAY E, 1971, REV FRANCAISE RECHER, P61