MINIMUM ERROR DISPERSION LINEAR-FILTERING OF SCALAR SYMMETRIC STABLE PROCESSES

被引:45
作者
STUCK, BW
机构
[1] Bell Laboratories, Murray Hill
关键词
D O I
10.1109/TAC.1978.1101763
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The well-known Kalman-Bucy linear-filtering theory for Gaussian Markov processes is generalized to cover a particular class of non-Gaussian Markov processes, the scalar symmetric stable Markov processes. Results are presented only for discrete time because of certain pathologies that arise in the continuous-time analog (except in the Gaussian case). Attention is confined to the scalar case because of technical problems arising in characterizing multivariate stable distributions (except in the Gaussian case). © 1978 IEEE
引用
收藏
页码:507 / 509
页数:3
相关论文
共 14 条
[1]  
Bachelier L., 1964, RANDOM CHARACTER STO
[2]  
EVANS JE, 1969, AD691814 DDC MIT LIN
[3]   THE BEHAVIOR OF STOCK-MARKET PRICES [J].
FAMA, EF .
JOURNAL OF BUSINESS, 1965, 38 (01) :34-105
[4]  
FELLER W, 1971, INTRO PROBABILITY TH, V2, P169
[5]  
GNEDENKO BV, 1968, LIMIT DISTRIBUTIONS, pCH3
[6]  
Kalman R., 1961, J BASIC ENG, V83, P95, DOI [10.1115/1.3658902, DOI 10.1115/1.3658902]
[7]  
Kalman R.E., 1960, J FLUID ENG-T ASME, V82, P35, DOI DOI 10.1115/1.3662552
[8]   ROBUST BAYESIAN ESTIMATION FOR LINEAR-MODEL AND ROBUSTIFYING KALMAN FILTER [J].
MASRELIEZ, CJ ;
MARTIN, RD .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (03) :361-371
[9]   SOME REMARKS ON MULTIVARIATE STABLE DISTRIBUTIONS [J].
PAULAUSKAS, VJ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1976, 6 (03) :356-368
[10]  
Skorokhod A.V., 1957, THEORY PROB APPPL, V2, P407