Microbial populations associated with the major substrates of the canopy of a single 70 m old-growth Douglas fir were studied to determine potential activities. Seasonal samples from bark, foliage, epiphytic moss, lichens, and litter accumulations were collected to: (a) obtain population data, (b) isolate the major groups of microorganisms present, (c) measure enzymatic activities associated with cellulose and xylan degradation, and (d) examine the potential for nitrogen fixation. We tested 562 bacterial isolates for utilization of 25 compounds associated with the canopy substrates, and for activities in nitrogen and sulfur cycle transformations. Total bacterial populations, reflecting seasonal temperature and moisture conditions, were lowest on bark and foliage [21-266×103 colony-forming units (CFU/g)] and highest on moss and lodged litter (19-610×105 CFU/g). Lichens contained intermediate numbers of bacteria (3.3-270×105 CFU/g). The majority of the bacteria were classified as species of Arthrobacter, Bacillus, Flavobacterium, and Xanthomonas. Isolates of Alcaligenes (Achromobacter), Aeromonas, Chromobacterium, Micrococcus, and Pseudomonas were less common. No measurable rates of nitrogen fixation attributable to free-living bacteria were detected by acetylene reduction. Eleven species in six genera of lichens containing a blue-green algal phycobiont showed positive acetylene reduction. One species, Lobaria oregana, accounted for 51% of the total lichen biomass of the canopy. Cellulase and xylanase activity was routinely detected in moss and litter samples, and less frequently in lichens. There was a strong correlation between the two activities for moss (r=0.94) and litter (r=0.81). © 1979 Springer-Verlag New York Inc.