PREDICTION OF REDUCED ION MOBILITY CONSTANTS FROM STRUCTURAL INFORMATION USING MULTIPLE LINEAR-REGRESSION ANALYSIS AND COMPUTATIONAL NEURAL NETWORKS

被引:95
作者
WESSEL, MD [1 ]
JURS, PC [1 ]
机构
[1] PENN STATE UNIV, DEPT CHEM, UNIVERSITY PK, PA 16802 USA
关键词
D O I
10.1021/ac00087a012
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Multiple linear regression analysis and computational neural networks are used to develop models that predict reduced ion mobility constants (K-0) from quantitative structural information encoded as descriptors. The errors associated with the models are similar to the calculated experimental error of similar to 0.040 K-0 units. The best regression model contains five descriptors and has a multiple correlation coefficient (R) value of 0.991 and a standard deviation of 0.0469 K-0 units. The neural network model utilizes the same five descriptors and has a root mean square (RMS) error of 0.0393 K-0 units. The descriptors encode molecular size, weight, functional group, and structural classifications.
引用
收藏
页码:2480 / 2487
页数:8
相关论文
共 48 条
[1]   CHARGE CALCULATIONS IN MOLECULAR MECHANICS .4. A GENERAL-METHOD FOR CONJUGATED SYSTEMS [J].
ABRAHAM, RJ ;
SMITH, PE .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1988, 9 (04) :288-297
[2]  
[Anonymous], 1980, PRACTICAL METHODS OP
[3]  
[Anonymous], 1970, IMA J APPL MATH, DOI DOI 10.1093/IMAMAT/6.1.76
[4]  
Belsley D. A., 2005, REGRESSION DIAGNOSTI
[5]   SEPARATION OF MIXTURES OF AROMATIC KETONES IN SUB-NANOGRAM RANGE BY PLASMA CHROMATOGRAPHY [J].
BENEZRA, SA .
JOURNAL OF CHROMATOGRAPHIC SCIENCE, 1976, 14 (03) :122-125
[6]   VAN DER WAALS VOLUMES + RADII [J].
BONDI, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (03) :441-+
[7]  
Bradley GL, 1975, PRIMER LINEAR ALGEBR
[8]  
Broyden C. G., 1970, Journal of the Institute of Mathematics and Its Applications, V6, P222
[9]  
Burkert U., 1982, ACS MONOGRAPH
[10]   GROUND-STATES OF MOLECULES .38. MNDO METHOD - APPROXIMATIONS AND PARAMETERS [J].
DEWAR, MJS ;
THIEL, W .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (15) :4899-4907