X-RAY CRYSTALLOGRAPHIC STRUCTURES OF D-XYLOSE ISOMERASE-SUBSTRATE COMPLEXES POSITION THE SUBSTRATE AND PROVIDE EVIDENCE FOR METAL MOVEMENT DURING CATALYSIS

被引:117
作者
LAVIE, A
ALLEN, KN
PETSKO, GA
RINGE, D
机构
[1] BRANDEIS UNIV,DEPT BIOCHEM,WALTHAM,MA 02254
[2] BRANDEIS UNIV,DEPT CHEM,WALTHAM,MA 02254
[3] BRANDEIS UNIV,ROSENSTIEL BASIC MED SCI RES CTR,WALTHAM,MA 02254
关键词
D O I
10.1021/bi00184a016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The X-ray crystallographic structures of the metal-activated enzyme xylose isomerase from Streptomyces olivochromogenes with the substrates D-glucose, 3-O-methyl-D-glucose and in the absence of substrate were determined to 1.96-,2.19-, and 1.81-Angstrom resolution and refined to R-factors of 16.6%, 15.9%, and 16.1%, respectively. Xylose isomerase catalyzes the interconversion between glucose and fructose (xylose and xylulose under physiological conditions) by utilizing two metal cofactors to promote a hydride shift; the metals are bridged by a glutamate residue. This puts xylose isomerase in the small but rapidly growing family of enzymes with a bridged bimetallic active site, in which both metals are involved in the chemical transformation. The substrate 3-O-methylglucose was chosen in order to position the glucose molecule in the observed electron density unambiguously. Of the two essential magnesium ions per active site, Mg-2 was observed to occupy two alternate positions, separated by 1.8 Angstrom, in the substrate-soaked structures. The deduced movement was not observed in the structure without substrate present and is attributed to a step following substrate binding but prior to isomerization. The substrates glucose and 3-O-methylglucose are observed in their linear extended forms and make identical interactions with the enzyme by forming ligands to Mg-1 through O2 and O4 and by forming hydrogen bonds with His53 through O5 and Lys182 through O1. Mg-2 has a water ligand that is interpreted in the crystal structure in the absence of substrate as a hydroxide ion and in the presence of substrate as a water molecule. This hydroxide ion may act as a base to deprotonate the glucose O2 and subsequently protonate the product fructose O1 concomitant with hydride transfer. Calculations of the solvent-accessible surface of possible dimers, with and without the alpha-helical C-terminal domain, suggest that the tetramer is the active form of this xylose isomerase.
引用
收藏
页码:5469 / 5480
页数:12
相关论文
共 42 条
[1]   FREE-ENERGY PROFILE FOR REACTION CATALYZED BY TRIOSEPHOSPHATE ISOMERASE [J].
ALBERY, WJ ;
KNOWLES, JR .
BIOCHEMISTRY, 1976, 15 (25) :5627-5631
[2]   ISOTOPIC EXCHANGE PLUS SUBSTRATE AND INHIBITION-KINETICS OF D-XYLOSE ISOMERASE DO NOT SUPPORT A PROTON-TRANSFER MECHANISM [J].
ALLEN, KN ;
LAVIE, A ;
FARBER, GK ;
GLASFELD, A ;
PETSKO, GA ;
RINGE, D .
BIOCHEMISTRY, 1994, 33 (06) :1481-1487
[3]   ROLE OF THE DIVALENT METAL-ION IN SUGAR BINDING, RING-OPENING, AND ISOMERIZATION BY D-XYLOSE ISOMERASE - REPLACEMENT OF A CATALYTIC METAL BY AN AMINO-ACID [J].
ALLEN, KN ;
LAVIE, A ;
GLASFELD, A ;
TANADA, TN ;
GERRITY, DP ;
CARLSON, SC ;
FARBER, GK ;
PETSKO, GA ;
RINGE, D .
BIOCHEMISTRY, 1994, 33 (06) :1488-1494
[4]   IDENTIFICATION OF ESSENTIAL HISTIDINE-RESIDUES IN THE ACTIVE-SITE OF ESCHERICHIA-COLI XYLOSE (GLUCOSE) ISOMERASE [J].
BATT, CA ;
JAMIESON, AC ;
VANDEYAR, MA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (02) :618-622
[5]   TRIOSEPHOSPHATE ISOMERASE CATALYSIS IS DIFFUSION CONTROLLED - APPENDIX - ANALYSIS OF TRIOSE PHOSPHATE EQUILIBRIA IN AQUEOUS-SOLUTION BY P-31 NMR [J].
BLACKLOW, SC ;
RAINES, RT ;
LIM, WA ;
ZAMORE, PD ;
KNOWLES, JR .
BIOCHEMISTRY, 1988, 27 (04) :1158-1167
[6]   ISOMERIZATION OF D-GLUCOSE WITH GLUCOSE-ISOMERASE - A MECHANISTIC STUDY [J].
BOCK, K ;
MELDAL, M ;
MEYER, B ;
WIEBE, L .
ACTA CHEMICA SCANDINAVICA SERIES B-ORGANIC CHEMISTRY AND BIOCHEMISTRY, 1983, 37 (02) :101-108
[7]  
BRAGG L, 1965, CRYSTALLINE STATE, V4, P116
[8]  
BRUNGER AT, 1992, X PLOR VERSION 3 0 M
[9]  
CALLENS M, 1987, ARCH INT PHYSIOL BIO, V95, pB64
[10]  
CARRELL HL, 1984, J BIOL CHEM, V259, P3230