MINIMIZING STRAIN-RATE HISTORY AND RESULTING GREATEST LOWER BOUND ON WORK IN LINEAR VISCOELASITCITY

被引:5
作者
BREUER, S
机构
[1] Tel-Aviv University, Department of Applied Mathematics, Tel-Aviv, Ramat-Aviv
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 1969年 / 49卷 / 04期
关键词
D O I
10.1002/zamm.19690490404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper considers isothermal deformations of a linear viscoelastic material in simple tension or compression. The relaxation modulus defining the material is assumed to be a sum of exponential functions, but need not necessarily be a monotonic function. The greatest lower bound on the work required to deform the material from its virgin state in a given time interval (0, T) is determined – independently of the strain‐rate history – in terms of T, the strain at the time T, and the constants entering the definition of the relaxation modulus. The optimum strain‐rate history, which actually produces the greatest lower bound on the work, is also determined. The results may be extended to the general deformations of a linear anisotropic viscoelastic solid. Copyright © 1969 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:209 / &
相关论文
共 4 条
[1]  
BREUER S, 1964, J APP MATH PHYS, V15, P12
[2]  
BREUER S, TO BE PUBLISHED
[3]   A NOTE ON A WORK INEQUALITY IN LINEAR VISCOELASTICITY [J].
MARTIN, JB ;
PONTER, ARS .
QUARTERLY OF APPLIED MATHEMATICS, 1966, 24 (02) :161-&
[4]  
Onat E., 1962, Q APPL MATH, V19, P355