DISCRIMINANT-ANALYSIS USING NONMETRIC MULTIDIMENSIONAL-SCALING

被引:20
作者
COX, TF
FERRY, G
机构
[1] Department of Mathematics and Statistics, The University, Newcastle upon Tyne
关键词
DISSIMILARITY; FISHER LINEAR DISCRIMINANT; NONMETRIC MULTIDIMENSIONAL SCALING;
D O I
10.1016/0031-3203(93)90096-F
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many discriminant methods produce a mapping of observations into the real line, and then an observation of an unknown group is allocated to a group according to its mapped position on the real line. In this paper the process is reversed so that training observations from each group are positioned in a Euclidean space, usually two-dimensional, using non-metric multidimensional scaling and then a mapping from the original sample space to the MDS space is found. This mapping is then used to discriminate future observations.
引用
收藏
页码:145 / 153
页数:9
相关论文
共 9 条
[1]  
Ahmed N., 1975, ORTHOGONAL TRANSFORM, P86
[2]  
CHATFIELD C, 1980, INTRO MULTIVARIATE A
[3]  
Everitt B., 1980, CLUSTER ANAL
[4]   MULTIDIMENSIONAL-SCALING BY OPTIMIZING GOODNESS OF FIT TO A NONMETRIC HYPOTHESIS [J].
KRUSKAL, JB .
PSYCHOMETRIKA, 1964, 29 (01) :1-27
[5]  
KRUSKAL JB, 1964, PSYCHOMETRIKA, V29, P114
[6]  
Mardia K V., 1979, MULTIVARIATE ANAL
[7]  
Schiffman S. S., 1981, INTRO MULTIDIMENSION
[8]   THE ANALYSIS OF PROXIMITIES - MULTIDIMENSIONAL-SCALING WITH AN UNKNOWN DISTANCE FUNCTION .1. [J].
SHEPARD, RN .
PSYCHOMETRIKA, 1962, 27 (02) :125-140
[9]   THE ANALYSIS OF PROXIMITIES - MULTIDIMENSIONAL-SCALING WITH AN UNKNOWN DISTANCE FUNCTION .2. [J].
SHEPARD, RN .
PSYCHOMETRIKA, 1962, 27 (03) :219-246