A DISEASE TRANSMISSION MODEL IN A NONCONSTANT POPULATION

被引:120
作者
DERRICK, WR
VANDENDRIESSCHE, P
机构
[1] UNIV VICTORIA,DEPT MATH,VICTORIA V8W 3P4,BC,CANADA
[2] UNIV MUNICH,INST MATH,W-8000 MUNICH 2,GERMANY
关键词
EPIDEMIOLOGIC MODEL; NONLINEAR INCIDENCE FUNCTION; HOPF BIFURCATION; HOMOCLINIC LOOP; SADDLE CONNECTION;
D O I
10.1007/BF00173889
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A general SIRS disease transmission model is formulated under assumptions that the size of the population varies, the incidence rate is nonlinear, and the recovered (removed) class may also be directly reinfected. For a class of incidence functions it is shown that the model has no periodic solutions. By contrast, for a particular incidence function, a combination of analytical and numerical techniques are used to show that (for some parameters) periodic solutions can arise through homoclinic loops or saddle connections and disappear through Hopf bifurcations.
引用
收藏
页码:495 / 512
页数:18
相关论文
共 17 条
  • [1] ANALYSIS OF A DISEASE TRANSMISSION MODEL IN A POPULATION WITH VARYING SIZE
    BUSENBERG, S
    VANDENDRIESSCHE, P
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1990, 28 (03) : 257 - 270
  • [2] BUSENBERG S, 1991, LECT NOTES BIOMATH, V92, P70
  • [3] EPIDEMIOLOGICAL MODELS WITH AGE STRUCTURE, PROPORTIONATE MIXING, AND CROSS-IMMUNITY
    CASTILLOCHAVEZ, C
    HETHCOTE, HW
    ANDREASEN, V
    LEVIN, SA
    LIU, WM
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (03) : 233 - 258
  • [4] PATTERNS IN THE EFFECTS OF INFECTIOUS-DISEASES ON POPULATION-GROWTH
    DIEKMANN, O
    KRETZSCHMAR, M
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1991, 29 (06) : 539 - 570
  • [5] Doedel E., 1986, AUTO SOFTWARE CONTIN
  • [6] Ermentrout B, 1990, PHASEPLANE DYNAMICAL
  • [7] Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
  • [8] Hahn W., 1967, STABILITY MOTION
  • [9] HETHCOTE HW, 1989, BIOMATH, V18
  • [10] MODELING AND ANALYZING HIV TRANSMISSION - THE EFFECT OF CONTACT PATTERNS
    JACQUEZ, JA
    SIMON, CP
    KOOPMAN, J
    SATTENSPIEL, L
    PERRY, T
    [J]. MATHEMATICAL BIOSCIENCES, 1988, 92 (02) : 119 - 199