UNIVERSAL CORRELATIONS FOR DETERMINISTIC PLUS RANDOM HAMILTONIANS

被引:43
作者
BREZIN, E
HIKAMI, S
ZEE, A
机构
[1] UNIV CALIF SANTA BARBARA,INST THEORET PHYS,SANTA BARBARA,CA 93106
[2] UNIV TOKYO,DEPT PURE & APPL SCI,MEGURO KU,TOKYO 153,JAPAN
来源
PHYSICAL REVIEW E | 1995年 / 51卷 / 06期
关键词
D O I
10.1103/PhysRevE.51.5442
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the (smoothed) average correlation between the density of energy levels of a disordered system, in which the Hamiltonian is equal to the sum of a deterministic H0, and of a random potential cphi. Remarkably, this correlation function may be explicitly determined in the limit of large matrices, for any unperturbed H0 and for a class of probability distribution P(cphi) of the random potential. We find a compact representation of the correlation function. From this representation one readily obtains the short distance behavior, which has been conjectured in various contexts to be universal. Indeed we find that it is totally independent of both H0 and P(cphi). © 1995 The American Physical Society.
引用
收藏
页码:5442 / 5452
页数:11
相关论文
共 15 条
[1]   PROPERTIES OF LOOP EQUATIONS FOR THE HERMITIAN MATRIX MODEL AND FOR 2-DIMENSIONAL QUANTUM-GRAVITY [J].
AMBJORN, J ;
MAKEENKO, YM .
MODERN PHYSICS LETTERS A, 1990, 5 (22) :1753-1763
[2]   UNIVERSALITY IN THE RANDOM-MATRIX THEORY OF QUANTUM TRANSPORT [J].
BEENAKKER, CWJ .
PHYSICAL REVIEW LETTERS, 1993, 70 (08) :1155-1158
[3]   UNIVERSAL SCALING OF THE TAIL OF THE DENSITY OF EIGENVALUES IN RANDOM MATRIX MODELS [J].
BOWICK, MJ ;
BREZIN, E .
PHYSICS LETTERS B, 1991, 268 (01) :21-28
[4]   CORRELATION-FUNCTIONS IN DISORDERED-SYSTEMS [J].
BREZIN, E ;
ZEE, A .
PHYSICAL REVIEW E, 1994, 49 (04) :2588-2596
[5]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[6]  
BREZIN E, UNPUB
[7]  
BREZIN E, 1993, NUCL PHYS B, V40, P613
[8]  
BREZIN E, 1992, 2D QUANTUM GRAVITY R
[9]  
BREZIN E, 1993, CR HEBD ACAD SCI, V17, P735
[10]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773