HETEROCLINIC NETWORKS ON THE TETRAHEDRON

被引:58
作者
BRANNATH, W
机构
[1] Inst. fur Math., Wien Univ.
关键词
D O I
10.1088/0951-7715/7/5/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stability properties of heteroclinic cycles as they occur in heteroclinic networks on the tetrahedron. Their stability properties are investigated using Poincare sections and can be stated in terms of 'relative asymptotic stability'. We give necessary and sufficient conditions for such cycles to be relatively asymptotically stable with respect to some open set.
引用
收藏
页码:1367 / 1384
页数:18
相关论文
共 26 条
[1]  
Bhatia N.P., 1970, STABILITY THEORY DYN
[2]   STATIONARY BIFURCATION TO LIMIT-CYCLES AND HETEROCLINIC CYCLES [J].
FIELD, M ;
SWIFT, JW .
NONLINEARITY, 1991, 4 (04) :1001-1043
[3]   TIME AVERAGES FOR HETEROCLINIC ATTRACTORS [J].
GAUNERSDORFER, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (05) :1476-1489
[4]   STRUCTURALLY STABLE HETEROCLINIC CYCLES [J].
GUCKENHEIMER, J ;
HOLMES, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :189-192
[5]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[6]  
Hartman P., 2002, ORDINARY DIFFERENTIA, V2
[7]   A GENERAL COOPERATION THEOREM FOR HYPERCYCLES [J].
HOFBAUER, J .
MONATSHEFTE FUR MATHEMATIK, 1981, 91 (03) :233-240
[8]   A UNIFIED APPROACH TO PERSISTENCE [J].
HOFBAUER, J .
ACTA APPLICANDAE MATHEMATICAE, 1989, 14 (1-2) :11-22
[9]  
Hofbauer J., 1988, THEORY EVOLUTION DYN
[10]  
HOFBAUER J, 1993, IN PRESS TATRA MOUNT