NECESSARY AND SUFFICIENT CONDITIONS FOR A BOUNDED SOLUTION TO THE OPTIMALITY EQUATION IN AVERAGE REWARD MARKOV DECISION CHAINS

被引:16
作者
CAVAZOSCADENA, R [1 ]
机构
[1] UNIV AUTONOMA AGR ANTONIO NARRO,DEPT ESTADIST & CALCULO,SALTILLO,COAHUILA,MEXICO
关键词
MATHEMATICAL TECHNIQUES - State Space Methods - OPTIMIZATION;
D O I
10.1016/0167-6911(88)90043-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider average reward Markov decision processes with discrete time parameter and denumerable state space. We are concerned with the following problem: find necessary and sufficient conditions so that, for arbitrary bounded reward function, the corresponding average reward optimality equation has a bounded solution. This problem is solved for a class of systems including the case in which, under the action of any stationary policy, the state space is an irreducible positive recurrent class.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 11 条
[1]  
Ash R. B., 2014, REAL ANAL PROBABILIT
[2]  
BARAS JS, 1984, SRR8417 U MAR EL ENG
[3]  
CAVAZOSCADENA R, 1987, UNPUB APPL MATH OPTI
[4]  
CAVAZOSCADENA R, IN PRESS NOTE EXISTE
[5]   NOTE ON SIMULTANEOUS RECURRENCE CONDITIONS ON A SET OF DENUMERABLE STOCHASTIC MATRICES [J].
FEDERGRUEN, A ;
HORDIJK, A ;
TIJMS, HC .
JOURNAL OF APPLIED PROBABILITY, 1978, 15 (04) :842-847
[6]  
HINDERER K, 1970, LECTURE NOTES OPERAT, V33
[7]  
HORDIJK A, 1974, MATH CTR TRACT, V51
[8]  
Loeve M., 1977, PROBABILITY THEORY, VI
[9]  
ROSS SM, 1970, APPLIED PROBABILITY