SOME COMMENTS ON THE RATIONAL SOLUTIONS OF THE ZAKHAROV-SCHABAT EQUATIONS

被引:48
作者
MATVEEV, VB
机构
[1] Département de Physique Mathématique, Université des Sciences et Techniques du Languedoc, Montpellier Cedex
关键词
D O I
10.1007/BF00401932
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a family of the rational solutions of the Zakharov-Schabat equations. This family is characterized by extremely simple superposition principle, following directly from the Darboux-invariance of the Zakharov-Schabat equations proved in the works [1, 4]. Particularly we present an infinite sequence of polynomials P n (x, y, t, t 4, ..., t m), m≤n, so that the formula {Mathematical expression} where c i are the arbitrary constants, represents some class of solutions of the Kadomtcev-Petviashvily equation. The paramters t 4, ..., t K represent the explicit action of the commuting flows, related with the Zakharov-Schabat operators of the higher order, on the solutions of the K-P equation, and can be fixed independently in each P i. The polynomials P n are closely related with the second Waring formular well known in algebra. This relation imposes some specific constraints on the motion of the N particle Moser-Calogero system generated by P n. © 1979 D. Reidel Publishing Company.
引用
收藏
页码:503 / 512
页数:10
相关论文
共 14 条
[1]  
BORDAG LA, 1977, PHYSICS LETT A, V23
[2]   MOTION OF POLES AND ZEROS OF SPECIAL SOLUTIONS OF NON-LINEAR AND LINEAR PARTIAL-DIFFERENTIAL EQUATIONS AND RELATED SOLVABLE MANY-BODY PROBLEMS [J].
CALOGERO, F .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1978, 43 (02) :177-241
[3]   ALGEBRAIC INTERNAL WAVE SOLITONS AND THE INTEGRABLE CALOGERO-MOSER-SUTHERLAND N-BODY PROBLEM [J].
CHEN, HH ;
LEE, YC ;
PEREIRA, NR .
PHYSICS OF FLUIDS, 1979, 22 (01) :187-188
[4]   POLE EXPANSIONS OF NONLINEAR PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHOODNOVSKY, DV ;
CHOODNOVSKY, GV .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1977, 40 (02) :339-353
[5]  
CHOODNOVSKY G, 1979, LETT NUOVO CIMENTO, V25
[6]  
FAADEBRUNO M, 1857, Q J PURE APPL MATH, V1, P359
[7]  
GELFAND IM, 1978, FUNK ANAL PRILOZ, V12, P8
[8]  
Krichever I., 1978, FUNKTSIONAL ANAL PRI, V12, P76, DOI DOI 10.1007/BF01077570
[9]   DIFFERENTIAL-DIFFERENCE EVOLUTION EQUATIONS .2. (DARBOUX TRANSFORMATION FOR THE TODA LATTICE) [J].
MATVEEV, VB ;
SALLE, MA .
LETTERS IN MATHEMATICAL PHYSICS, 1979, 3 (05) :425-429
[10]   DARBOUX TRANSFORMATION AND THE EXPLICIT SOLUTIONS OF DIFFERENTIAL-DIFFERENCE AND DIFFERENCE-DIFFERENCE EVOLUTION EQUATIONS .1. [J].
MATVEEV, VB .
LETTERS IN MATHEMATICAL PHYSICS, 1979, 3 (03) :217-222