FLUCTUATIONS OF CORRELATION-FUNCTIONS IN DISORDERED SPIN SYSTEMS

被引:16
作者
CRISANTI, A
NICOLIS, S
PALADIN, G
VULPIANI, A
机构
[1] ECOLE POLYTECH FED LAUSANNE,DEPT PHYS,INST PHYS THEOR,CH-1015 LAUSANNE,SWITZERLAND
[2] NORDITA,DK-2100 COPENHAGEN,DENMARK
[3] CISM,GNSM,ROME,ITALY
[4] UNIV LAQUILA,DEPARTIMENTO FIS,I-67100 LAQUILA,ITALY
[5] UNIV LAUSANNE,INST PHYS THEOR,CH-1015 LAUSANNE,SWITZERLAND
[6] NATL INST NUCL PHYS,ROME,ITALY
[7] UNIV ROME,DEPARTIMENTO FIS,I-00185 ROME,ITALY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 13期
关键词
D O I
10.1088/0305-4470/23/13/042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The authors study the fluctuations of the two-point correlation function in one-dimensional disordered spin models. These survive even in the thermodynamic limit and, in order to reconstruct their probability distribution from the moments, they study a set of generalised correlation lengths zeta q. These moments may also be calculated within the transfer matrix formalism and provide insight on disorder-induced fluctuations. They show that the zeta q can be computed in Monte Carlo simulations. They discuss the crossover of the correlation decay rate at large distances to dominance by the most probable value given by zeta 0, and the relation with the finite-volume fluctuations of the free energy. Finally they sketch how to extend their arguments to dimensions two and three.
引用
收藏
页码:3083 / 3093
页数:11
相关论文
共 22 条
  • [1] KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS
    BENETTIN, G
    GALGANI, L
    STRELCYN, JM
    [J]. PHYSICAL REVIEW A, 1976, 14 (06): : 2338 - 2345
  • [2] Benettin G., 1980, MECCANICA, V15, P9, DOI DOI 10.1007/BF02128236
  • [3] Benettin G., 1980, MECCANICA, V15, P21, DOI 10.1007/BF02128236
  • [4] CHARACTERIZATION OF INTERMITTENCY IN CHAOTIC SYSTEMS
    BENZI, R
    PALADIN, G
    PARISI, G
    VULPIANI, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (12): : 2157 - 2165
  • [5] RIGOROUS BOUNDS AND THE REPLICA METHOD FOR PRODUCTS OF RANDOM MATRICES
    BOUCHAUD, JP
    GEORGES, A
    HANSEL, D
    LEDOUSSAL, P
    MAILLARD, JM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (18): : L1145 - L1152
  • [6] GENERALIZED LYAPUNOV EXPONENTS IN HIGH-DIMENSIONAL CHAOTIC DYNAMICS AND PRODUCTS OF LARGE RANDOM MATRICES
    CRISANTI, A
    PALADIN, G
    VULPIANI, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1988, 53 (3-4) : 583 - 601
  • [7] SIMPLE FRUSTRATED SYSTEMS - CHAINS, STRIPS AND SQUARES
    DERRIDA, B
    VANNIMENUS, J
    POMEAU, Y
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1978, 11 (23): : 4749 - 4765
  • [8] LYAPOUNOV EXPONENT OF THE ONE DIMENSIONAL ANDERSON MODEL - WEAK DISORDER EXPANSIONS
    DERRIDA, B
    GARDNER, E
    [J]. JOURNAL DE PHYSIQUE, 1984, 45 (08): : 1283 - 1295
  • [9] CAN DISORDER INDUCE SEVERAL PHASE-TRANSITIONS
    DERRIDA, B
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 103 (1-4): : 29 - 39
  • [10] Derrida B., 1981, J PHYS C SOLID STATE, V14, pL544