RIEMANNIAN GEOMETRY AND STABILITY OF IDEAL QUANTUM GASES

被引:100
作者
JANYSZEK, H
MRUGALA, R
机构
[1] Inst. of Phys., Nicholas Copernikus Univ., Torun
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 04期
关键词
D O I
10.1088/0305-4470/23/4/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the stability of ideal quantum gases can be measured by means of the Riemann scalar curvature R of the parameter space. The components of the metric tensor were assumed to be the second moments of energy and the number of particle fluctuations. As a result, R is a function of the second and third moments of those quantities. For bosons R is positive and increases monotonically from zero at the classical limit to positive infinity in the condensation region. A system is less stable if R is bigger and vice versa. For fermions R is negative and this means that Fermi gases are more stable than the ideal Bose and ideal classical systems.
引用
收藏
页码:467 / 476
页数:10
相关论文
共 15 条
[1]  
Balescu R., 1975, EQUILIBRIUM NONEQUIL
[2]   LENGTH AND CURVATURE IN THE GEOMETRY OF THERMODYNAMICS [J].
GILMORE, R .
PHYSICAL REVIEW A, 1984, 30 (04) :1994-1997
[3]  
Harmann R., 1973, GEOMETRY PHYSIC SYST
[4]  
INGARDEN RS, 1976, TENSOR, V30, P201
[5]  
Janyszek H., 1989, Reports on Mathematical Physics, V27, P145, DOI 10.1016/0034-4877(89)90001-3
[6]  
Janyszek H., 1986, Reports on Mathematical Physics, V24, P1, DOI 10.1016/0034-4877(86)90036-4
[7]  
Janyszek H., 1986, Reports on Mathematical Physics, V24, P11, DOI 10.1016/0034-4877(86)90037-6
[8]   ON EQUIVALENCE OF 2 METRICS IN CLASSICAL THERMODYNAMICS [J].
MRUGALA, R .
PHYSICA A, 1984, 125 (2-3) :631-639
[9]   THERMODYNAMICS - RIEMANNIAN GEOMETRIC MODEL [J].
RUPPEINER, G .
PHYSICAL REVIEW A, 1979, 20 (04) :1608-1613
[10]   ON THE RELATION BETWEEN ENTROPY AND ENERGY VERSIONS OF THERMODYNAMIC LENGTH [J].
SALAMON, P ;
NULTON, J ;
IHRIG, E .
JOURNAL OF CHEMICAL PHYSICS, 1984, 80 (01) :436-437