GRADIENT EXPANSION OF THE KINETIC-ENERGY DENSITY FUNCTIONAL - LOCAL BEHAVIOR OF THE KINETIC-ENERGY DENSITY

被引:24
作者
MURPHY, DR
PARR, RG
机构
[1] Department of Chemistry, University of North Carolina, Chapel Hill
关键词
D O I
10.1016/0009-2614(79)80592-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Calculations with Hartree-Fock electron densities for the rare gas atoms He through Xe show that the gradient expansion for the kinetic energy functional, T[ρ{variant}] = T0[ρ{variant}] + T2[ρ{variant}] + T4[ρ{variant}] + ... = ∫t(ρ{variant})ρ{variant} dτ, approximates the kinetic energy by averaging over the shell structure present in the true local kinetic energy density, t(ρ{variant}), and that the accuracy of the gradient expansion improves with increasing atomic number. Components of t(ρ{variant}), t0(ρ{variant}), t2(ρ{variant}) and t4(ρ{variant}), are exhibited and discussed. The defined function t(ρ{variant}) is everywhere positive. © 1979.
引用
收藏
页码:377 / 379
页数:3
相关论文
共 11 条
[1]   GRADIENT CORRECTIONS IN ENERGY DENSITY FUNCTIONAL [J].
ALONSO, JA ;
GIRIFALCO, LA .
CHEMICAL PHYSICS LETTERS, 1978, 53 (01) :190-191
[2]  
[Anonymous], 1957, ZH EKSP TEOR FIZ
[3]  
Bader R. F. W., 1969, Int.J. Quantum Chem, V3, P327, DOI [DOI 10.1002/QUA.560030308, 10.1002/qua.560030308]
[4]  
Clementi E., 1974, Atomic Data and Nuclear Data Tables, V14, P177, DOI 10.1016/S0092-640X(74)80016-1
[5]   QUANTUM CORRECTIONS TO THOMAS-FERMI APPROXIMATION - KIRZHNITS METHOD [J].
HODGES, CH .
CANADIAN JOURNAL OF PHYSICS, 1973, 51 (13) :1428-1437
[6]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919
[7]   STUDY OF ELECTRON-GAS APPROXIMATION [J].
KIM, YS ;
GORDON, RG .
JOURNAL OF CHEMICAL PHYSICS, 1974, 60 (05) :1842-1857
[8]   HARTREE-FOCK DENSITIES IN THOMAS-FERMI-DIRAC FORMULAS INCLUDING INHOMOGENEITY TERM [J].
SHIH, CC .
PHYSICAL REVIEW A, 1976, 14 (03) :919-921
[9]  
TAL Y, UNPUBLISHED
[10]   STUDY OF DENSITY GRADIENT EXPANSION IN SURFACE-ENERGY CALCULATION FOR METALS [J].
WANG, JSY ;
RASOLT, M .
PHYSICAL REVIEW B, 1976, 13 (12) :5330-5337