NONLINEAR THEORY OF ION ACOUSTIC WAVES WITH LANDAU DAMPING

被引:202
作者
OTT, E
SUDAN, RN
机构
[1] School of Electrical Engineering, Laboratory for Plasma Studies, Cornell University, Ithaca, NY
关键词
D O I
10.1063/1.1692358
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The following macroscopic equation is shown to govern the time development of a nonlinear ion acoustic wave: ∂/∂r + α2n , ∂n/∂ξ + α3 ∂3n/∂ξ 3 + α1/(8π)1/2 P ∫ -∞+∞ ∂n/∂ξ′ dξ′/ξ′- ξ′ = 0, where n, ξ, and τ are normalized wave amplitude, space, and time coordinates, and α1, α2, α3 are parameters which depend on the relative strengths of Landau damping, nonlinearity, and dispersion. The first three terms constitute the Korteweg-deVries equation, and the last term represents the effect of Landau damping. The equation conserves the number of particles but the wave energy can be shown to decay always. It is demonstrated that an initial waveform may either steepen or not depending on the relative size of the nonlinearity as compared to Landau damping. It is also shown that the Landau damping term causes the amplitude of a solitary wave to decay with time as (τ + ρ0)-2.
引用
收藏
页码:2388 / &
相关论文
共 13 条
[1]  
ANDERSEN HK, 1967, PHYS FLUIDS, V11, P149
[2]  
Bogoliubov N. N., 1961, ASYMPTOTIC METHODS T
[3]  
de Vries DJ, 1985, PHILOS MAG, V5, P422, DOI DOI 10.1080/14786449508620739
[4]   LONGITUDINAL ION OSCILLATIONS IN A HOT PLASMA [J].
FRIED, BD ;
GOULD, RW .
PHYSICS OF FLUIDS, 1961, 4 (01) :139-147
[5]  
GARDNER CS, 1960, NY09082 NEW YORK U C
[6]  
KENNEL CF, 1967, J GEOPHYS RES, V72, P3303, DOI 10.1029/JZ072i013p03303
[7]  
LIGHTHILL MJ, 1964, FOURIER ANALYSIS GEN, P43
[8]   EVOLUTION OF A NONLINEAR ION ACOUSTIC WAVE [J].
MONTGOMERY, D .
PHYSICAL REVIEW LETTERS, 1967, 19 (26) :1465-+
[9]  
Sagdeev R., 1966, REV PLASMA PHYS, V4, P23
[10]   TURBULENT SHOCK WAVES IN PLASMAS [J].
TIDMAN, DA .
PHYSICS OF FLUIDS, 1967, 10 (03) :547-&