EFFECT OF CHANGES IN CIRCULATING BLOOD-VOLUME ON CARDIAC-OUTPUT AND ARTERIAL AND VENTRICULAR BLOOD-PRESSURE IN THE STAGE-18, STAGE-24, AND STAGE-29 CHICK-EMBRYO

被引:46
作者
WAGMAN, AJ
HU, N
CLARK, EB
机构
[1] UNIV IOWA HOSP & CLIN, DEPT PEDIAT, IOWA CITY, IA 52242 USA
[2] UNIV IOWA HOSP & CLIN, CTR CARDIOVASC, IOWA CITY, IA 52242 USA
关键词
cardiac development; chick embryo; Frank-Starling mechanism; hemodynamics; vascular resistance;
D O I
10.1161/01.RES.67.1.187
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We studied the hemodynamic effects of changing volume loading in the chick embryo, before autonomic innervation, to test the hypothesis that the Frank-Starling mechanism functions in the embryonic myocardium. Dorsal aortic blood velocity was measured by pulsed Doppler. Heart rate and aortic diameter were also measured to calculate cardiac output and stroke volume index. Vitelline arterial and ventricular pressures were measured with a servo-null micropressure system in stage 24 embryos. Infusing isotonic solution intravenously resulted in linear increases in stroke volume index for stages 18 (y = 388x + 6.89), 24 (y = 466x + 7.86), and 29 (y = 549x + 4.96). The slopes and intercepts were statistically the same for all three stages. Similar volume loading in stage 24 embryos initially increased mean arterial pressure linearly, but at higher loading conditions, the rate of rise lessens. Thus, volume loading resulted in a decrease in vascular resistance. Withdrawing blood from stage 24 embryos resulted in a decrease in ventricular peak systolic and end-diastolic pressures. With reinfusion of the blood, systolic and end-diastolic pressures initially rose above baseline levels and later returned to normal. We conclude that a length-tension relation is present in the preinnervated embryonic heart and that vascular resistance changes inversely with loading conditions. We speculate that these mechanisms are the primary hemodynamic control mechanism in the early chick embryo.
引用
收藏
页码:187 / 192
页数:6
相关论文
共 13 条
[1]   VENTRICULAR-FUNCTION AND MORPHOLOGY IN CHICK-EMBRYO FROM STAGE-18 TO STAGE-29 [J].
CLARK, EB ;
HU, N ;
DUMMETT, JL ;
VANDEKIEFT, GK ;
OLSON, C ;
TOMANEK, R .
AMERICAN JOURNAL OF PHYSIOLOGY, 1986, 250 (03) :H407-H413
[2]   DEVELOPMENTAL HEMODYNAMIC-CHANGES IN THE CHICK-EMBRYO FROM STAGE 18 TO 27 [J].
CLARK, EB ;
HU, N .
CIRCULATION RESEARCH, 1982, 51 (06) :810-815
[3]   THE EFFECT OF ISOPROTERENOL ON CARDIOVASCULAR FUNCTION IN THE STAGE-24 CHICK-EMBRYO [J].
CLARK, EB ;
HU, N ;
DOOLEY, JB .
TERATOLOGY, 1985, 31 (01) :41-47
[4]  
CLARK EB, 1984, CONGENITAL HEART DIS, P377
[5]   VENTRICULAR FUNCTION IN NEWBORN LAMB [J].
DOWNING, SE ;
TALNER, NS ;
GARDNER, TH .
AMERICAN JOURNAL OF PHYSIOLOGY, 1965, 208 (05) :931-&
[6]   EMBRYONIC STROKE VOLUME AND CARDIAC-OUTPUT IN CHICK [J].
FABER, JJ ;
GREEN, TJ ;
THORNBURG, KL .
DEVELOPMENTAL BIOLOGY, 1974, 41 (01) :14-21
[7]  
FRIEDMAN W F, 1972, Progress in Cardiovascular Diseases, V15, P87, DOI 10.1016/0033-0620(72)90006-0
[8]   DEVELOPMENT OF TRANSMITTER SECRETORY MECHANISMS BY ADRENERGIC-NEURONS IN THE EMBRYONIC CHICK HEART VENTRICLE [J].
HIGGINS, D ;
PAPPANO, AJ .
DEVELOPMENTAL BIOLOGY, 1981, 87 (01) :148-162
[9]   FRANK-STARLING RELATIONSHIP AS AN IMPORTANT DETERMINANT OF FETAL CARDIAC-OUTPUT [J].
KIRKPATRICK, SE ;
PITLICK, PT ;
NALIBOFF, J ;
FRIEDMAN, WF .
AMERICAN JOURNAL OF PHYSIOLOGY, 1976, 231 (02) :495-500
[10]  
PAPPANO AJ, 1974, J PHARMACOL EXP THER, V191, P468