GEOMETRICAL FINITENESS FOR HYPERBOLIC GROUPS

被引:154
作者
BOWDITCH, BH
机构
[1] Faculty of Mathematical Studies, University of Southampton, Southampton, Highfield
关键词
D O I
10.1006/jfan.1993.1052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an account of the notion of geometrical finiteness as applied to discrete groups acting on hyperbolic space of any dimension. We prove the equivalence of various definitions of geometrical finiteness, and describe the geometry of fundamental domains. We give a complete account of when Dirichiet domains are finite-sided. © 1993 by Academic Press. Inc.
引用
收藏
页码:245 / 317
页数:73
相关论文
共 48 条
[1]   FINITELY GENERATED KLEINIAN GROUPS [J].
AHLFORS, LV .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (02) :413-&
[3]  
AHLFORS LV, 1965, AM J MATH, V87, P759, DOI DOI 10.2307/2373073
[4]  
APANASOV BN, 1982, SIBERIAN MATH J+, V23, P771
[5]  
APANASOV BN, 1983, ANN GLOB ANAL GEOM, V0001, P00001
[6]  
Ballman W., 1985, PROGR MATH, V61
[7]   LIMIT POINTS OF KLEINIAN GROUPS AND FINITE SIDED FUNDAMENTAL POLYHEDRA [J].
BEARDON, AF ;
MASKIT, B .
ACTA MATHEMATICA, 1974, 132 (1-2) :1-12
[8]  
BEARDON AF, 1983, GRADUATE TEXTS MATH
[9]   ON BOUNDARIES OF TEICHMULLER SPACES AND ON KLEINIAN GROUPS .1. [J].
BERS, L .
ANNALS OF MATHEMATICS, 1970, 91 (03) :570-&
[10]   HYPERBOLIC MANIFOLDS WITH ARBITRARILY SHORT GEODESICS [J].
BONAHON, F ;
OTAL, JP .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :255-261