CONDITION OF STOCHASTICITY IN QUANTUM NON-LINEAR SYSTEMS .2. KINETIC DESCRIPTION OF QUANTUM K-SYSTEMS

被引:29
作者
BERMAN, GP
ZASLAVSKY, GM
机构
[1] Kirensky Institute of Physics, Siberian Department, the Academy of Sciences, Krasnoyarsk
来源
PHYSICA A | 1979年 / 97卷 / 02期
关键词
D O I
10.1016/0378-4371(79)90112-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum K-systems can usually be regarded as the systems which are conventional K-systems at ℏ = 0, i.e. they have the property of mixing trajectories in a phase space. The master kinetic equation without a priori random phase assumptions is derived in the quasiclassical approximation for the quantum K-systems. It is shown how the nondiagonal elements of density matrix decay and the memory about initial conditions vanishes. A quantum nonlinear oscilator perturbed by a periodically time-dependent field is considered as an example. © 1979.
引用
收藏
页码:367 / 382
页数:16
相关论文
共 22 条
  • [1] CONDITION OF STOCHASTICITY IN QUANTUM NON-LINEAR SYSTEMS
    BERMAN, GP
    ZASLAVSKY, GM
    [J]. PHYSICA A, 1978, 91 (3-4): : 450 - 460
  • [2] BOGOLYUBOV NN, 1970, SELECTED WORKS, V2, P287
  • [3] BOGOLYUBOV NN, 1970, SELECTED WORKS, V2, P5
  • [4] CASATI G, 1977, P INT C STOCHASTIC B
  • [5] CHIRIKOV BV, 1969, 267 I NUCL PHYS PREP
  • [6] FORD J, 1975, FUNDAMENTAL PROBLEMS, V3, P215
  • [7] BERNOULLI SEQUENCES AND TRAJECTORIES IN ANISOTROPIC KEPLER PROBLEM
    GUTZWILLER, MC
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (04) : 806 - 823
  • [8] KOLMOGOROV AN, 1958, DOKL AKAD NAUK SSSR+, V119, P861
  • [9] KRILOV NS, 1950, PAPERS STATISTICAL P
  • [10] Maslov V.P., 1976, QUASICLASSICAL APPRO