STATISTICAL-MECHANICS OF LAPLACIAN FRACTALS

被引:7
作者
ELEZGARAY, J
MUZY, JF
ARGOUL, F
ARNEODO, A
机构
[1] Centre de Recherche Paul Pascal, 33600 Pessac, avenue Schweitzer
关键词
D O I
10.1103/PhysRevLett.71.2425
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on numerical evidence for a statistical mechanics description of the probability distribution of clusters grown on a square lattice with the eta model. The morphology selection mechanism in Laplacian growth phenomena is formulated in terms of two functions alpha(eta) and beta(eta), which play the role of a free energy and an inverse temperature, respectively. Invariants of the growth process such as the fractal dimension of a typical cluster and the singularity spectrum of its harmonic measure are computed from these thermodynamic quantities.
引用
收藏
页码:2425 / 2428
页数:4
相关论文
共 25 条
[1]   STRUCTURAL 5-FOLD SYMMETRY IN THE FRACTAL MORPHOLOGY OF DIFFUSION-LIMITED AGGREGATES [J].
ARNEODO, A ;
ARGOUL, F ;
MUZY, JF ;
TABARD, M .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1992, 188 (1-3) :217-242
[2]   GOLDEN MEAN ARITHMETIC IN THE FRACTAL BRANCHING OF DIFFUSION-LIMITED AGGREGATES [J].
ARNEODO, A ;
ARGOUL, F ;
BACRY, E ;
MUZY, JF ;
TABARD, M .
PHYSICAL REVIEW LETTERS, 1992, 68 (23) :3456-3459
[3]   UNCOVERING FIBONACCI SEQUENCES IN THE FRACTAL MORPHOLOGY OF DIFFUSION-LIMITED AGGREGATES [J].
ARNEODO, A ;
ARGOUL, F ;
MUZY, JF ;
TABARD, M .
PHYSICS LETTERS A, 1992, 171 (1-2) :31-36
[4]  
ARNEODO A, 1991, GROWTH FORM NONLINEA, P297
[5]  
ARNEODO A, 1992, IN PRESS P INT C WAV
[6]   SCREENING IN MULTIFRACTAL GROWTH [J].
BALL, R ;
BLUNT, M .
PHYSICAL REVIEW A, 1989, 39 (07) :3591-3596
[7]   MEAN-FIELD THEORY FOR DIFFUSION-LIMITED AGGREGATION IN LOW DIMENSIONS [J].
BRENER, E ;
LEVINE, H ;
TU, YH .
PHYSICAL REVIEW LETTERS, 1991, 66 (15) :1978-1981
[8]  
COUDER Y, 1991, CHAOS ORDER PATTERNS, P203
[9]  
ELEZGARAY J, IN PRESS
[10]  
EVERTZ C, 1989, THESIS U GRONINGEN