TENTATIVE DESCRIPTION OF THE CRYSTALLOGRAPHY OF AMORPHOUS SOLIDS

被引:170
作者
KLEMAN, M
SADOC, JF
机构
来源
JOURNAL DE PHYSIQUE LETTRES | 1979年 / 40卷 / 21期
关键词
Compendex;
D O I
10.1051/jphyslet:019790040021056900
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A number of continuous random lattices can be classified as specific one-to-one mappings of ordered lattices of spaces of constant curvature onto the usual 3-dimensional euclidean space. These mappings put emphasis on two types of lattice defects: surface defects for spaces of constant positive curvature (i. e. spherical spaces), disclinations for spaces of constant negative curvature (Lobatchewskian spaces). This method might provide clues for solving the difficulties encountered in the description of amorphous solids with metallic or covalent bonds.
引用
收藏
页码:L569 / L574
页数:6
相关论文
共 16 条
[1]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[2]  
ARNOLD VI, 1974, METHODES MATH MECANI
[3]  
Bilby BA., 1960, PROGR SOLID MECH, V1, P329
[4]  
Cartan E E., 1963, LECONS GEOMETRIE ESP
[5]   STRUCTURE AND PROPERTIES OF METALLIC GLASSES [J].
CHAUDHARI, P ;
TURNBULL, D .
SCIENCE, 1978, 199 (4324) :11-21
[6]   WORLD-STRUCTURE AND NON-EUCLIDEAN HONEYCOMBS [J].
COXETER, HSM ;
WHITROW, GJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1950, 201 (1066) :417-437
[7]  
FARGES J, 1975, J PHYS-PARIS, V36, P62
[8]  
FARGES J, 1978, THESIS ORSAY
[9]  
Fejes-Toth L., 1964, REGULAR FIGURES
[10]  
Hilbert D., 1952, GEOMETRY IMAGINATION