ANALYSIS OF SOME MOVING SPACE-TIME FINITE-ELEMENT METHODS

被引:42
作者
BANK, RE
SANTOS, RF
机构
[1] Univ of California at San Diego, La Jolla, CA
关键词
MOVING FINITE ELEMENT METHODS; CONVECTION DIFFUSION EQUATIONS; ISOPARAMETRIC FINITE ELEMENTS;
D O I
10.1137/0730001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two space-time finite element methods for solving time-dependent partial differential equations are defined and analyzed. The methods are based on the use of isoparametric finite elements to implicitly define the time discretization on a moving mesh in the space dimensions. One method allows for adding and deleting knots in a continuous fashion, while the other allows for discontinuous changes in the mesh (static rezone). A detailed convergence analysis for a model parabolic equation, with a possibly large convection term is presented. Here the authors obtain symmetric best approximation error estimates similar to those obtained by Dupont [Math. Comp., 39 (1982), pp. 85-107] for the semidiscrete case.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 18 条
[1]   2ND-ORDER FINITE-ELEMENT APPROXIMATIONS AND A POSTERIORI ERROR ESTIMATION FOR TWO-DIMENSIONAL PARABOLIC-SYSTEMS [J].
ADJERID, S ;
FLAHERTY, JE .
NUMERISCHE MATHEMATIK, 1988, 53 (1-2) :183-198
[2]   A LOCAL REFINEMENT FINITE-ELEMENT METHOD FOR TWO-DIMENSIONAL PARABOLIC-SYSTEMS [J].
ADJERID, S ;
FLAHERTY, JE .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (05) :792-811
[3]   A MOVING FINITE-ELEMENT METHOD WITH ERROR ESTIMATION AND REFINEMENT FOR ONE-DIMENSIONAL TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ADJERID, S ;
FLAHERTY, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (04) :778-796
[4]   THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SZABO, BA ;
KATZ, IN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :515-545
[5]  
BABUSKA I, 1981, NUMER MATH, V37, P2567
[6]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[7]  
Bank RE, 1990, PLTMG SOFTWARE PACKA
[8]   NUMERICAL-METHODS FOR CONVECTION-DOMINATED DIFFUSION-PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE-ELEMENT OR FINITE-DIFFERENCE PROCEDURES [J].
DOUGLAS, J ;
RUSSELL, TF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (05) :871-885
[9]   MESH MODIFICATION FOR EVOLUTION-EQUATIONS [J].
DUPONT, T .
MATHEMATICS OF COMPUTATION, 1982, 39 (159) :85-107
[10]  
ERIKSSON K, 1988, ADAPTIVE FINITE ELEM