COMPARISON PRINCIPLES FOR IMPULSIVE PARABOLIC EQUATIONS WITH APPLICATIONS TO MODELS OF SINGLE SPECIES GROWTH

被引:114
作者
ERBE, LH
FREEDMAN, HI
LIU, XZ
WU, JH
机构
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS | 1991年 / 32卷
关键词
D O I
10.1017/S033427000000850X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes some maximum and comparison principles relative to lower and upper solutions of nonlinear parabolic partial differential equations with impulsive effects. These principles are applied to obtain some sufficient conditions for the global asymptotic stability of a unique positive equilibrium in a reaction-diffusion equation modeling the growth of a single-species population subject to abrupt changes of certain important system parameters.
引用
收藏
页码:382 / 400
页数:19
相关论文
共 26 条
[2]  
ARONSON DG, 1980, P ADV SEMINAR DYNAMI
[3]  
BAINOV DD, 1989, THEORY IMPULSIVE DIF
[4]   CONSTANT-RATE STOCKING OF PREDATOR-PREY SYSTEMS [J].
BRAUER, F ;
SOUDACK, AC .
JOURNAL OF MATHEMATICAL BIOLOGY, 1981, 11 (01) :1-14
[5]   CONSTANT RATE POPULATION HARVESTING - EQUILIBRIUM AND STABILITY [J].
BRAUER, F ;
SANCHEZ, DA .
THEORETICAL POPULATION BIOLOGY, 1975, 8 (01) :12-30
[6]  
BRAUER F, 1975, INT C DIFFERENTIAL E, P53
[7]   AGGREGATION AND THE COMPETITIVE EXCLUSION-PRINCIPLE [J].
BRITTON, NF .
JOURNAL OF THEORETICAL BIOLOGY, 1989, 136 (01) :57-66
[8]  
CANTRELL RS, IN PRESS P ROY SOC E
[9]  
Freedman H.I., 1987, DETERMINISTIC MATH M
[10]   POPULATION DIFFUSION IN A 2-PATCH ENVIRONMENT [J].
FREEDMAN, HI ;
SHUKLA, JB ;
TAKEUCHI, Y .
MATHEMATICAL BIOSCIENCES, 1989, 95 (01) :111-123