LOSSY MULTISTEP LAMELLAR GRATINGS IN CONICAL DIFFRACTION MOUNTINGS - AN EXACT EIGENFUNCTION SOLUTION

被引:24
作者
SANDSTROM, SE
TAYEB, G
PETIT, R
机构
[1] The Institute of Theoretical Physics Chalmers University of Technology, Göteborg
[2] Laboratoire d'Optique Electromagnétique Centre de Saint-Jérôme, Marseille, 13397, Dept. 49
[3] Laboratoire d'Optique Electromagnétique Centre de Saint-Jérôme, Marseille, 13397, Dept. 49
关键词
D O I
10.1163/156939393X00778
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The method of exact eigenfunctions has proven to be effective for the scalar grating problem. This makes it worthwhile to apply the method to the vectorial grating problem, also referred to as the problem of conical diffraction. The approach to exact eigenfunctions considered here relies on a refinement of approximate eigenvalues. For complicated gratings in particular, this technique reduces the numerical effort required to compute the vectorial eigenfunctions. Metallic and dielectric cavity-type structures as well as other structures with strong resonances are studied. Good convergence properties have been observed for a wide range of parameter values. The vectorial treatment of the case of general incidence provides new theoretical results for the color-separation problem.
引用
收藏
页码:631 / 649
页数:19
相关论文
共 15 条
  • [1] Botten L.C., Craig M.S., Me Phedran R.C., Adams J.L., Rewartha J.R., The dielectric lamellar diffraction grating, Optica Acta, 28, pp. 413-428, (1981)
  • [2] Botten L.C., Craig M.S., Me Phedran R.C., Adams J.L., Rewartha J.R., Optica Acta, pp. 1087-1102
  • [3] Botten L.C., Craig M.S., Me Phedran R.C., Highly conducting lamellar diffraction gratings, Optica Acta, 28, pp. 1103-1106, (1981)
  • [4] Sheng P., Stepleman R.S., Sanda P.N., Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations, Phys. Rev., B 26, pp. 2907-2916, (1982)
  • [5] Suratteau J.Y., Cadilhac M., Petit R., On the numerical study of deep dielectric lamellar gratings, JJRSI Proceedings, pp. 179-182, (1983)
  • [6] Tayeb G., Petit R., On the numerical study of deep conducting lamellar diffraction gratings, Optica Acta, 31, pp. 1361-1365, (1984)
  • [7] Knop K., Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves, J. Opt. Soc. Am, 68, pp. 1206-1210, (1978)
  • [8] Morf R., Diffraction theory - DOE efficiency, Contribution to the Workshop onOptical Information Technology, (1991)
  • [9] Sandstrom S.-E., Tayeb G., Petit R., Some comments on the use of exact eigenfunctions for lossy lamellar gratings, LOE Internal Report, (1992)
  • [10] Li L., Haggans C.W., On the convergence of the coupled-wave approach for lamellar gratings, OSA Conference Proceedings, (1992)