BET RATIONAL APPROXIMATION TO MARKOV FUNCTIONS

被引:14
作者
ANDERSSON, JE [1 ]
机构
[1] GOTHENBURG UNIV,S-41296 GOTHENBURG,SWEDEN
关键词
D O I
10.1006/jath.1994.1015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main result concerns rational approximations to Markov-Stieltjes functions in the dual spaces L(p)/H(p), 1 less-than-or-equal-to p less-than-or-equal-to infinity, on the unit circle of the complex plane. For fixed n we consider approximation by rationals whose denominators have n different zeros all with double multiplicity. In general these rationals are of order 2n but we show that there is a best approximating one and that this one is of order n only. This result gives a new approach to previous results by Barrett and Goncar. As an example of application we study the degree of approximation of (1 - z)alpha in BMOA and uniform norms. (C) 1994 Academic Press, Inc.
引用
收藏
页码:219 / 232
页数:14
相关论文
共 13 条
[1]  
Andersson J.-E., 1988, ANAL MATH, V14, P11
[2]  
ANDERSSON JE, 1984, NUMER MATH, V44, P301, DOI 10.1007/BF01410113
[3]  
Barrett W., 1974, Journal of the Institute of Mathematics and Its Applications, V13, P107
[4]  
BARRETT W, 1971, J I MATH APPL, V7, P308
[5]  
Bojanov B. D., 1979, Calcolo, V16, P61, DOI 10.1007/BF02575761
[6]  
Duren P., 1970, THEORY HPSPACES
[7]  
Ganelius T., 1979, Analysis Mathematica, V5, P19, DOI 10.1007/BF02079347
[8]  
GANELIUS T, 1982, LECTURES APPROXIMATI
[9]  
GANELIUS T, 1976, MATHEMATIKA, V2, P129
[10]  
GONCHAR A. A., 1978, MAT SBORNIK, V105, P147