HEAVY METAL-ACTIVATED SYNTHESIS OF PEPTIDES IN CHLAMYDOMONAS-REINHARDTII

被引:123
作者
HOWE, G [1 ]
MERCHANT, S [1 ]
机构
[1] UNIV CALIF LOS ANGELES, DEPT CHEM & BIOCHEM, LOS ANGELES, CA 90024 USA
关键词
D O I
10.1104/pp.98.1.127
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In this study, we have addressed the capacity of the green alga Chlamydomonas reinhardtii to produce metal-binding peptides in response to stress induced by the heavy metals Cd2+, Hg2+, and Ag+. Cells cultured in the presence of sublethal concentrations of Cd2+ synthesized and accumulated oligopeptides consisting solely of glutamic acid, cysteine, and glycine in an average ratio of 3:3:1. Cadmium-induced peptides were isolated in their native form as higher molecular weight peptide-metal complexes with an apparent molecular weight of approximately 6.5 x 10(3). The isolated complex bound cadmium (as evidenced by absorption spectroscopy) and sequestered (with a stolchlometry of 0.7 moles of cadmium per mole of cysteine) up to 70% of the total cadmium found in extracts of cadmium-treated cells. In Hg2+-treated cells, the principal thiol-containing compound induced by Hg2+ ions was glutathione. It is possible that glutathione functions in plant cells (as it does in animal cells) to detoxify heavy metals. Cells treated with Ag+ ions also synthesized a sulfur-containing component with a charge to mass ratio similar to Cd2+-induced peptides. But, in contrast to the results obtained using Cd2+ as an inducer, these molecules did not accumulate to significant levels in Ag+-treated cells. The presence of physiological concentrations of Cu2+ in the growth medium blocked the synthesis of the Ag+-inducible component(s) and rendered cells resistant to the toxic effects of Ag+, suggesting competition between Cu2+ and Ag+ ions, possibly at the level of metal uptake.
引用
收藏
页码:127 / 136
页数:10
相关论文
共 39 条