TRANSITION TO HYPERCHAOS IN COUPLED GENERALIZED VANDERPOL EQUATIONS

被引:63
作者
KAPITANIAK, T
STEEB, WH
机构
[1] UNIV LEEDS,DEPT APPL MATH STUDIES,LEEDS LS2 9JT,W YORKSHIRE,ENGLAND
[2] UNIV LEEDS,CTR NONLINEAR STUDIES,LEEDS LS2 9JT,W YORKSHIRE,ENGLAND
[3] RAND AFRIKAANS UNIV,DEPT APPL MATH & NONLINEAR STUDIES,JOHANNESBURG 2000,SOUTH AFRICA
关键词
D O I
10.1016/0375-9601(91)90624-H
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It has been shown that two coupled generalized van der Pol equations can show hyperchaotic behaviour, i.e. the first two one-dimensional Lyapunov exponents are positive. The scaling law for transition from chaos to hyperchaos based on the properties of the Poincare map has been found. For fixed parameter values we also found that different behaviours of the system, such as limit cycles, chaos and hyperchaos, can coexist.
引用
收藏
页码:33 / 36
页数:4
相关论文
共 12 条
[1]   GENERIC BEHAVIOR OF COUPLED OSCILLATORS [J].
HOGG, T ;
HUBERMAN, BA .
PHYSICAL REVIEW A, 1984, 29 (01) :275-281
[2]   TRANSITION FROM TORUS TO CHAOS ACCOMPANIED BY FREQUENCY LOCKINGS WITH SYMMETRY-BREAKING - IN CONNECTION WITH THE COUPLED-LOGISTIC MAP [J].
KANEKO, K .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (05) :1427-1442
[3]  
Kapitaniak T., 1991, CHAOTIC OSCILLATIONS
[4]   COUPLED CHAOTIC OSCILLATORS [J].
KUNICK, A ;
STEEB, WH .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1985, 54 (04) :1220-1223
[5]   HYPERCHAOS - LABORATORY EXPERIMENT AND NUMERICAL CONFIRMATION [J].
MATSUMOTO, T ;
CHUA, LO ;
KOBAYASHI, K .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1143-1147
[6]  
MEYERKRESS G, 1984, PHYS REV A, V30, P1127
[7]   SIMPLE ELECTRONIC CIRCUIT FOR THE DEMONSTRATION OF CHAOTIC PHENOMENA [J].
MISHINA, T ;
KOHMOTO, T ;
HASHI, T .
AMERICAN JOURNAL OF PHYSICS, 1985, 53 (04) :332-334
[8]   POSSIBLE FAILURE OF ARNOLD DIFFUSION IN NONLINEAR HAMILTONIAN-SYSTEMS WITH MORE THAN 2-DEGREES OF FREEDOM [J].
PETTINI, M ;
VULPIANI, A .
PHYSICS LETTERS A, 1984, 106 (5-6) :207-211
[9]   EQUATION FOR HYPERCHAOS [J].
ROSSLER, OE .
PHYSICS LETTERS A, 1979, 71 (2-3) :155-157
[10]  
Steeb W.-H., 1989, CHAOS DYNAMISCHEN SY