BARYCENTRIC FORMULAS FOR INTERPOLATING TRIGONOMETRIC POLYNOMIALS AND THEIR CONJUGATES

被引:41
作者
HENRICI, P
机构
[1] Eidgenössische Technische Hochschule, Zürich
关键词
Subject Classifications: AMS(MOS): D05; CR:; 5.13;
D O I
10.1007/BF01399556
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The trigonometric polynomial of minimum degree assuming at the points φk := 2 πk/n (k=0, 1, ..., n-1) given values fk is for n even and φ ≠φk represented by {Mathematical expression} Similar formulas hold for n odd, and for the conjugate polynomial t*(φ{symbol}). A simple recursive algorithm exists for n=2l. This method of evaluating t or t* is numerically stable even for every large n, and for values of φ{symbol} arbitrarily close to some φk. Inasmuch as the evaluation of (*) requires a mere O(n) operations, our formulas are more advantageous than the Fast Fourier Transform if t or t* is to be evaluated only for a small number of values of φ{symbol}. © 1979 Springer-Verlag.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 15 条
[1]  
BULIRSCH H, 1968, INTERPOLATION GENA 3, P232
[2]  
Clenshaw CW., 1955, MATH COMP, V9, P118, DOI DOI 10.1090/S0025-5718-1955-0071856-0
[3]   AN ALGORITHM FOR MACHINE CALCULATION OF COMPLEX FOURIER SERIES [J].
COOLEY, JW ;
TUKEY, JW .
MATHEMATICS OF COMPUTATION, 1965, 19 (90) :297-&
[4]   ESTIMATES IN TRIGONOMETRIC INTERPOLATION AND IN DETERMINATION OF CONJUGATE FUNCTIONS [J].
GAIER, D .
COMPUTING, 1974, 12 (02) :145-148
[5]  
Gauss C.F., 1805, WERKE, V3, P265
[6]  
GAUTSCHI W, 1975, THEORY APPLICATION S, P1
[7]  
Hamming RW, 1962, NUMERICAL METHODS SC
[8]  
HENRICI P, 1979, SIAM REV, V21
[9]  
RUTISHAUSER H, 1976, VORLESUNGEN NUMERISC, V1
[10]   COEFFICIENTS FOR FACILITATING TRIGONOMETRIC INTERPOLATION [J].
SALZER, HE .
JOURNAL OF MATHEMATICS AND PHYSICS, 1948, 27 (04) :274-278