EXACT MONOPOLE SOLUTIONS IN GAUGE-THEORIES FOR AN ARBITRARY SEMISIMPLE COMPACT GROUP

被引:45
作者
LEZNOV, AN
SAVELIEV, MV
机构
[1] Institute for High Energy Physics, Serpukhov
关键词
D O I
10.1007/BF00405294
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct an exact n-parametric monopole and dyon solutions for an arbitrary compact gauge group G of rank n by using the symmetry between cylindrically symmetric instanton equations in Euclidean space R4 and monopole equations in Minkowski space R3,1 (with Higgs scalar field in adjoint representation). The solutions are spherically symmetric with respect to the total momentum operator {Mathematical expression} represents the minimal embedding of SU(2) in G. Explicit expressions for the monopole magnetic charge and mass matrices are obtained. The remarkable aspect of our results is the existence of discrete series of the monopole solutions, which are labelled by n 'quantum' numbers and degenerated in the latter ones at a fixed monopole mass matrix. © 1979 D. Reidel Publishing Company.
引用
收藏
页码:207 / 211
页数:5
相关论文
共 16 条
[1]   EXACT MONOPOLE SOLUTIONS IN SU(N) GAUGE THEORY [J].
BAIS, FA ;
WELDON, HA .
PHYSICAL REVIEW LETTERS, 1978, 41 (09) :601-604
[2]   SPHERICALLY SYMMETRIC MONOPOLES IN NON-ABELIAN GAUGE THEORIES [J].
BAIS, FA ;
PRIMACK, JR .
NUCLEAR PHYSICS B, 1977, 123 (02) :253-274
[3]  
BAIS FA, 1978, PHYS LETT B, V79, P297, DOI 10.1016/0370-2693(78)90247-2
[4]   CHARGE-MONOPOLE DUALITY IN SPONTANEOUSLY BROKEN GAUGE THEORIES [J].
BAIS, FA .
PHYSICAL REVIEW D, 1978, 18 (04) :1206-1210
[5]   PSEUDOPARTICLE SOLUTIONS OF YANG-MILLS EQUATIONS [J].
BELAVIN, AA ;
POLYAKOV, AM ;
SCHWARTZ, AS ;
TYUPKIN, YS .
PHYSICS LETTERS B, 1975, 59 (01) :85-87
[6]  
BOGOMOLNYI EB, 1976, SOV J NUCL PHYS+, V24, P449
[7]  
GODDARD P, 1978, TH2445 CERN PREPR
[8]   COMPOSITE MAGNETIC MONOPOLES FOR SU(N) SPONTANEOUSLY BROKEN TO U(1) [J].
GOLDHABER, AS ;
WILKINSON, D .
NUCLEAR PHYSICS B, 1976, 114 (02) :317-333
[9]  
GOLDHABER AS, 1977, PHYS REV D, V16, P1221
[10]   SPHERICALLY SYMMETRIC EQUATIONS IN GAUGE THEORIES FOR AN ARBITRARY SEMISIMPLE COMPACT LIE GROUP [J].
LEZNOV, AN ;
SAVELIEV, MV .
PHYSICS LETTERS B, 1978, 79 (03) :294-296