REGGE CALCULUS AND ASHTEKAR VARIABLES

被引:14
作者
IMMIRZI, G [1 ]
机构
[1] IST NAZL FIS NUCL, SEZ PERUGIA, I-06100 PERUGIA, ITALY
关键词
D O I
10.1088/0264-9381/11/8/005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Spacetime discretized in simplexes, as proposed in the pioneer work of Regge, is described in terms of self-dual variables. In particular, we elucidate the 'kinematic' structure of the initial value problem, in which 3-space is divided into flat tetrahedra, paying particular attention to the role played by the reality condition for the Ashtekar variables. An attempt is made to write down the vector and scalar constraints of the theory in a simple and potentially useful way.
引用
收藏
页码:1971 / 1979
页数:9
相关论文
共 31 条
[1]   NEW VARIABLES FOR CLASSICAL AND QUANTUM-GRAVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW LETTERS, 1986, 57 (18) :2244-2247
[2]   NEW VARIABLES FOR GRAVITY - INCLUSION OF MATTER [J].
ASHTEKAR, A ;
ROMANO, JD ;
TATE, RS .
PHYSICAL REVIEW D, 1989, 40 (08) :2572-2587
[3]   NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW D, 1987, 36 (06) :1587-1602
[4]  
ASHTEKAR A, 1991, NONPERTURBATIVE CANO
[5]   FUNCTIONAL MEASURE FOR LATTICE GRAVITY [J].
BANDER, M .
PHYSICAL REVIEW LETTERS, 1986, 57 (15) :1825-1827
[6]   HAMILTONIAN LATTICE GRAVITY - DEFORMATIONS OF DISCRETE MANIFOLDS [J].
BANDER, M .
PHYSICAL REVIEW D, 1987, 36 (08) :2297-2300
[7]   HAMILTONIAN LATTICE GRAVITY .2. DISCRETE MOVING-FRAME FORMULATION [J].
BANDER, M .
PHYSICAL REVIEW D, 1988, 38 (04) :1056-1062
[8]   THE HAMILTONIAN CONSTRAINT IN QUANTUM-GRAVITY [J].
BLENCOWE, MP .
NUCLEAR PHYSICS B, 1990, 341 (01) :213-251
[9]   THE RIEMANN AND EXTRINSIC CURVATURE TENSORS IN THE REGGE CALCULUS [J].
BREWIN, L .
CLASSICAL AND QUANTUM GRAVITY, 1988, 5 (09) :1193-1203
[10]   THE GAUSS-CODACCI EQUATION ON A REGGE SPACETIME .2. [J].
BREWIN, L .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (05) :947-960