RAY SHOOTING IN POLYGONS USING GEODESIC TRIANGULATIONS

被引:109
作者
CHAZELLE, B
EDELSBRUNNER, H
GRIGNI, M
GUIBAS, L
HERSHBERGER, J
SHARIR, M
SNOEYINK, J
机构
[1] DEC SYST RES CTR,PALO ALTO,CA 94301
[2] MIT,DEPT MATH,CAMBRIDGE,MA 02139
[3] MIT,COMP SCI LAB,CAMBRIDGE,MA 02139
[4] STANFORD UNIV,DEPT COMP SCI,STANFORD,CA 94305
[5] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[6] UNIV ILLINOIS,DEPT COMP SCI,URBANA,IL 61801
[7] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
关键词
COMPUTATIONAL GEOMETRY; RAY-SHOOTING; TRIANGULATION;
D O I
10.1007/BF01377183
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let P be a simple polygon with n vertices. We present a simple decomposition scheme that partitions the interior of P into O(n) so-called geodesic triangles, so that any line segment interior to P crosses at most 2 log n of these triangles. This decomposition can be used to preprocess P in a very simple manner, so that any ray-shooting query can be answered in time O(log n). The data structure requires O(n) storage and O(n log n) preprocessing time. By using more sophisticated techniques, we can reduce the preprocessing time to O(n). We also extend our general technique to the case of ray shooting amidst k polygonal obstacles with a total of n edges, so that a query can be answered in O(square-root k log n) time.
引用
收藏
页码:54 / 68
页数:15
相关论文
共 22 条
[1]   VISIBILITY AND INTERSECTION PROBLEMS IN PLANE GEOMETRY [J].
CHAZELLE, B ;
GUIBAS, LJ .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (06) :551-581
[2]   THE COMPLEXITY OF CUTTING COMPLEXES [J].
CHAZELLE, B ;
EDELSBRUNNER, H ;
GUIBAS, LJ .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (02) :139-181
[3]  
Chazelle B., 1982, 23rd Annual Symposium on Foundations of Computer Science, P339, DOI 10.1109/SFCS.1982.58
[4]   TRIANGULATING A SIMPLE POLYGON IN LINEAR TIME [J].
CHAZELLE, B .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :485-524
[5]   Fractional Cascading: II. Applications [J].
Chazelle, Bernard ;
Guibas, Leonidas J. .
ALGORITHMICA, 1986, 1 (1-4) :163-191
[6]   Fractional Cascading: I. A Data Structuring Technique [J].
Chazelle, Bernard ;
Guibas, Leonidas J. .
ALGORITHMICA, 1986, 1 (1-4) :133-162
[7]   FAST DETECTION OF POLYHEDRAL INTERSECTION [J].
DOBKIN, DP ;
KIRKPATRICK, DG .
THEORETICAL COMPUTER SCIENCE, 1983, 27 (03) :241-253
[8]   OPTIMAL POINT LOCATION IN A MONOTONE SUBDIVISION [J].
EDELSBRUNNER, H ;
GUIBAS, LJ ;
STOLFI, J .
SIAM JOURNAL ON COMPUTING, 1986, 15 (02) :317-340
[9]   A LINEAR ALGORITHM FOR COMPUTING THE VISIBILITY POLYGON FROM A POINT [J].
ELGINDY, H ;
AVIS, D .
JOURNAL OF ALGORITHMS, 1981, 2 (02) :186-197
[10]   LINEAR-TIME ALGORITHMS FOR VISIBILITY AND SHORTEST-PATH PROBLEMS INSIDE TRIANGULATED SIMPLE POLYGONS [J].
GUIBAS, L ;
HERSHBERGER, J ;
LEVEN, D ;
SHARIR, M ;
TARJAN, RE .
ALGORITHMICA, 1987, 2 (02) :209-233