INHOMOGENEOUS GROWTH-PROCESSES

被引:62
作者
WOLF, DE
TANG, LH
机构
[1] Institut F̈r Festkörperforschung, Forschungszentrum J̈lich, D-5170 J̈lich
关键词
D O I
10.1103/PhysRevLett.65.1591
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is proposed that inhomogeneities in the deposition rate can be a powerful tool for investigating properties of growing films. The macroscopic shape of the resulting surface deformation is discussed analytically for the growth equation proposed by Kardar, Parisi, and Zhang [Phys. Rev. Lett. 56, 889 (1986)]. Computer simulations for a single-step growth model confirm the predictions based on this equation and give explicit values for its parameters. It is argued that inhomogeneous deposition also provides a new method for measuring the roughness exponent. © 1990 The American Physical Society.
引用
收藏
页码:1591 / 1594
页数:4
相关论文
共 14 条
[1]  
BRUINSMA R, 1990, IN PRESS KINETICS OR
[2]  
Burgers JM., 1974, NONLINEAR DIFFUSION, DOI DOI 10.1007/978-94-010-1745-9
[3]   THE SURFACE STATISTICS OF A GRANULAR AGGREGATE [J].
EDWARDS, SF ;
WILKINSON, DR .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1780) :17-31
[4]   SURFACE ROUGHENING IN A HYPERCUBE-STACKING MODEL [J].
FORREST, BM ;
TANG, LH .
PHYSICAL REVIEW LETTERS, 1990, 64 (12) :1405-1408
[5]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892
[6]   GROWTH OF SELF-AFFINE SURFACES [J].
KERTESZ, J ;
WOLF, DE .
PHYSICA D-NONLINEAR PHENOMENA, 1989, 38 (1-3) :221-225
[7]   BALLISTIC DEPOSITION ON SURFACES [J].
MEAKIN, P ;
RAMANLAL, P ;
SANDER, LM ;
BALL, RC .
PHYSICAL REVIEW A, 1986, 34 (06) :5091-5103
[8]  
MEDINA E, 1989, PHYS REV A, V39, P3059
[9]  
Mullins W. W., 1963, METAL SURFACES STRUC, P17
[10]   TIME-REVERSAL INVARIANCE AND UNIVERSALITY OF TWO-DIMENSIONAL GROWTH-MODELS [J].
PLISCHKE, M ;
RACZ, Z ;
LIU, D .
PHYSICAL REVIEW B, 1987, 35 (07) :3485-3495