FLAG MANIFOLDS AND TODA-LATTICES

被引:25
作者
FLASCHKA, H [1 ]
HAINE, L [1 ]
机构
[1] CATHOLIC UNIV LOUVAIN,INST MATH,B-1348 LOUVAIN,BELGIUM
关键词
D O I
10.1007/BF02571544
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:545 / 556
页数:12
相关论文
共 16 条
[1]   THE TODA LATTICE, DYNKIN DIAGRAMS, SINGULARITIES AND ABELIAN-VARIETIES [J].
ADLER, M ;
VANMOERBEKE, P .
INVENTIONES MATHEMATICAE, 1991, 103 (02) :223-278
[2]  
Bernstein I.N., 1973, RUSS MATH SURV, V28, P1, DOI 10.1070/RM1973v028n03ABEH001557
[3]  
Bremner M.R., 1985, TABLES DOMINANT WEIG
[4]   THE TODA FLOW ON A GENERIC ORBIT IS INTEGRABLE [J].
DEIFT, P ;
LI, LC ;
NANDA, T ;
TOMEI, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (02) :183-232
[5]  
ERCOLANI NM, PAINLEVE BALANCES DR
[6]   TORUS ORBITS IN G/P [J].
FLASCHKA, H ;
HAINE, L .
PACIFIC JOURNAL OF MATHEMATICS, 1991, 149 (02) :251-292
[7]  
FLASCHKA H, PAINLEVE ANAL SEMISI
[8]  
FLASCHKA H, 1988, ALGEBRAIC ANAL, V1, P141
[9]   COMBINATORIAL GEOMETRIES AND TORUS STRATA ON HOMOGENEOUS COMPACT MANIFOLDS [J].
GELFAND, IM ;
SERGANOVA, VV .
RUSSIAN MATHEMATICAL SURVEYS, 1987, 42 (02) :133-168
[10]   CLASSICAL AND QUANTUM-MECHANICAL SYSTEMS OF TODA-LATTICE TYPE .2. SOLUTIONS OF THE CLASSICAL FLOWS [J].
GOODMAN, R ;
WALLACH, NR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (02) :177-217