THE PERFORMANCE OF AN EIGENVALUE BOUND ON THE MAX-CUT PROBLEM IN SOME CLASSES OF GRAPHS

被引:18
作者
DELORME, C [1 ]
POLJAK, S [1 ]
机构
[1] CHARLES UNIV, KAM MFF, CS-1180 PRAGUE, CZECHOSLOVAKIA
关键词
D O I
10.1016/0012-365X(93)90151-I
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors earlier introduced a number phi(G), which gives a well-computable upper bound on the maximum bipartite subgraph of a graph or, more generally, on the maximum cut of a weighted graph. In this paper we study the performance of this bound on a large variety of examples from the graph theory. We also present an alternative definition of phi(G) using a graph operation of vertex-splitting. Finally, we present the results of some preliminary computational experiments on randomly generated graphs.
引用
收藏
页码:145 / 156
页数:12
相关论文
共 16 条
[1]  
BARAHONA F, 1983, 83273OR U BONN I OP
[2]  
BARAHONA F, 1980, 186 U SCI MED GREN M
[3]   ON TRANSPORTATION PROBLEMS WITH UPPER-BOUNDS ON LEADING RECTANGLES [J].
BARNES, ER ;
HOFFMAN, AJ .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1985, 6 (03) :487-496
[4]  
Brouwer A. E., 1989, ERGEBNISSE MATH IHRE, V3, P18
[5]  
Calderbank A., 1985, EUROPEAN J COMBIN, V6, P133
[6]  
DELORME C, UNPUB MATH PROGRAM
[7]  
Dem'yanov V. F., 1974, INTRO MINIMAX
[8]   LOWER BOUNDS FOR PARTITIONING OF GRAPHS [J].
DONATH, WE ;
HOFFMAN, AJ .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1973, 17 (05) :420-425
[9]  
FIEDLER M, 1973, CZECH MATH J, V23, P298
[10]  
Grotschel M., 1981, Operations Research Letters, V1, P23, DOI 10.1016/0167-6377(81)90020-1