ON TRIANGULAR NORM-BASED PROPOSITIONAL FUZZY LOGICS

被引:46
作者
BUTNARIU, D
KLEMENT, EP
ZAFRANY, S
机构
[1] JOHANNES KEPLER UNIV,INST MATH,A-4040 LINZ,AUSTRIA
[2] TECHNION ISRAEL INST TECHNOL,DEPT MATH,IL-32000 HAIFA,ISRAEL
关键词
FUZZY LOGICS; MIN-MAX LOGIC; LUKASIEWICZ LOGIC; TRIANGULAR NORMS; SATISFIABILITY;
D O I
10.1016/0165-0114(94)00172-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Fuzzy logics based on triangular norms and their corresponding conorms are investigated. An affirmative answer to the question whether in such logics a specific level of satisfiability of a set of formulas can be characterized by the same level of satisfiability of its finite subsets is given. Tautologies, contradictions and contigencies with respect to such fuzzy logics are studied, in particular for the important cases of min-max and Lukasiewicz logics. Finally, fundamental t-norm-based fuzzy logics are shown to provide a gradual transition between min-max and Lukasiewicz logics.
引用
收藏
页码:241 / 255
页数:15
相关论文
共 16 条
[1]   TRIANGULAR NORM-BASED MEASURES AND THEIR MARKOV KERNEL REPRESENTATION [J].
BUTNARIU, D ;
KLEMENT, EP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (01) :111-143
[2]  
Butnariu D., 1993, TRIANGULAR NORM BASE
[3]  
DEMANTARAS RL, 1990, APPROXIMATE REASONIN
[4]   FUZZY LOGICS AND THE GENERALIZED MODUS PONENS REVISITED [J].
DUBOIS, D ;
PRADE, H .
CYBERNETICS AND SYSTEMS, 1984, 15 (3-4) :293-331
[5]  
Enderton H.B., 2001, MATH INTRO LOGIC, VSecond
[6]  
Frank M., 1979, AEQUATIONES MATH, V19, P194
[7]  
Monk J. D., 1976, MATH LOGIC, V37
[8]  
Munkres J.R., 1975, TOPOLOGY 1 COURSE
[9]  
NOVAK V, 1990, KYBERNETIKA, V26, P134
[10]   FUZZY LOGIC .1. MANY-VALUED RULES OF INFERENCE [J].
PAVELKA, J .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1979, 25 (01) :45-52