CODING LEHMER PSEUDORANDOM NUMBER GENERATOR

被引:74
作者
PAYNE, WH
RABUNG, JR
BOGYO, TP
机构
[1] Washington State Univ., Pullman
关键词
modular arithmetic; prime factorization; primitive roots; pseudo-random number; random number; simulation; uniform frequency function; uniform probability density;
D O I
10.1145/362848.362860
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
An algorithm and coding technique is presented for quick evaluation of the Lehmer pseudo-random number generator modulo 2 31 - 1, a prime Mersenne number which produces 2 31 - 2 numbers, on a p-bit (greater than 31) computer. The computation method is extendible to limited problems in modular arithmetic. Prime factorization for 2 61 - 2 and a primitive root for 2 61 - 1, the next largest prime Mersenne number, are given for possible construction of a pseudo-random number generator of increased cycle length. © 1969, ACM. All rights reserved.
引用
收藏
页码:85 / &
相关论文
共 4 条