CLASSICAL AND LOGIC-BASED DYNAMIC OBSERVERS FOR FINITE AUTOMATA

被引:25
作者
CAINES, PE
GREINER, R
WANG, SN
机构
[1] MCGILL UNIV,DEPT ELECT ENGN,MONTREAL H3A 2A7,QUEBEC,CANADA
[2] CANADIAN INST ADV RES,TORONTO,ONTARIO,CANADA
[3] UNIV TORONTO,DEPT COMP SCI,TORONTO M5S 1A4,ONTARIO,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1093/imamci/8.1.45
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper formulates the state estimation problem for a partially observed input-state-output (N-state) automaton in terms of a classical observer automaton each of whose nodes correspond to the set of states consistent with a particular sequence of observations. It next provides several complexity results about these observers, i.e. bounds their convergence time and sizes, by use of the associated directed acyclic observer. The final part introduces the notion of a logic-based dynamic observer, shows how to encode these observers in predicate calculus, demonstrates an equivalence between classical and logic-based systems and observers, and illustrates some of the advantages of the logic-based approach.
引用
收藏
页码:45 / 80
页数:36
相关论文
共 23 条
[1]  
*BRACHMAN R, 1985, READING KNOWLEDGE RE
[2]  
CAINES EP, 1988, LINEAR STOCHASTIC SY
[3]  
CAINES PE, 1988, 1988 P C INF SCI SYS, P50
[4]  
CAINES PE, 1989, 1989 P C INF SCI SYS
[5]  
CAINES PE, 1988, 27TH P IEEE C DEC CO, P226
[6]  
Clocksin W. F., 1981, PROGRAMMING PROLOG
[7]  
Enderton H. B., 2001, MATH INTRO LOGIC, V2nd ed
[8]  
GENESERETH MR, 1987, LOGICAL F ARTIFICIAL
[9]  
Gill A., 1962, INTRO THEORY FINITE
[10]  
GOLDBLATT R, 1987, LOGICS TIME COMPUTAT