BINDING OF ATOMS AND STABILITY OF MOLECULES IN HARTREE AND THOMAS-FERMI TYPE THEORIES .3. BINDING OF NEUTRAL SUBSYSTEMS

被引:13
作者
CATTO, I
LIONS, PL
机构
[1] Ceremade, Université Paris-Dauphine, Place de Lattre de Tassigny
关键词
D O I
10.1080/03605309308820935
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is the third of a series devoted to the study of the binding of atoms, molecules and ions and of the stability of general molecular systems including molecular ions, in the context of Hartree and Thomas-Fermi type theories. For Thomas-Fermi-von Weizsacker or Thomas-Fermi-Dirac-von Weizsacker models, we prove here that neutral systems can be bound and in view of the results shown in the preceding parts this yields the stability of arbitrary molecules (general neutral molecular systems). For the Hartree and Hartree-Fock models, we prove that neutral planar systems can be bound and this yields the stability of arbitrary tetraatomic molecules for instance. Various variants and extensions are also considered.
引用
收藏
页码:381 / 429
页数:49
相关论文
共 28 条
[1]   FORMATION OF STABLE MOLECULES WITHIN STATISTICAL THEORY OF ATOMS [J].
BALAZS, NL .
PHYSICAL REVIEW, 1967, 156 (01) :42-&
[2]   INEQUALITIES FOR POTENTIALS OF PARTICLE-SYSTEMS [J].
BAXTER, JR .
ILLINOIS JOURNAL OF MATHEMATICS, 1980, 24 (04) :645-652
[3]  
Benguria, 1979, THESIS PRINCETON U
[4]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[6]   MINIMUM ACTION SOLUTIONS OF SOME VECTOR FIELD-EQUATIONS [J].
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (01) :97-113
[7]  
CATTO I, 1990, CR ACAD SCI I-MATH, V311, P193
[8]  
CATTO I, BINDING ATOMS STAB 1
[9]  
CATTO I, BINDING ATOMS STAB 2
[10]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474