MULTIFRACTALITY OF GROWING SURFACES

被引:67
作者
BARABASI, AL
BOURBONNAIS, R
JENSEN, M
KERTESZ, J
VICSEK, T
ZHANG, YC
机构
[1] FORSCHUNGSZENTRUM JULICH, FORSCHUNGSZENTRUM, HOCHSTLEISTUNGSRECHENZENTRUM, W-5170 JULICH 1, GERMANY
[2] NORDITA, DK-2100 COPENHAGEN, DENMARK
[3] UNIV COLOGNE, INST THEORET PHYS, W-5000 COLOGNE 41, GERMANY
[4] INST TECH PHYS, H-1325 BUDAPEST, HUNGARY
[5] IST NAZL FIS NUCL, I-100185 ROME, ITALY
来源
PHYSICAL REVIEW A | 1992年 / 45卷 / 10期
关键词
D O I
10.1103/PhysRevA.45.R6951
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have carried out large-scale computer simulations of experimentally motivated (1 + 1)-dimensional models of kinetic surface roughening with power-law-distributed amplitudes of uncorrelated noise. The appropriately normalized qth-order correlation function of the height differences c(q)(x) = [\h(x + x')-h(x')\q] shows strong multifractal scaling behavior up to a crossover length depending on the system size, i.e., c(q)(x) approximately x(qH)q, where H(q) is a continuously changing nontrivial function. Beyond the crossover length conventional scaling is found.
引用
收藏
页码:R6951 / R6954
页数:4
相关论文
共 31 条
  • [1] SCALING OF SURFACE FLUCTUATIONS AND DYNAMICS OF SURFACE GROWTH-MODELS WITH POWER-LAW NOISE
    AMAR, JG
    FAMILY, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (02): : L79 - L86
  • [2] HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS
    ANSELMET, F
    GAGNE, Y
    HOPFINGER, EJ
    ANTONIA, RA
    [J]. JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) : 63 - 89
  • [3] A MODEL FOR TEMPORAL FLUCTUATIONS OF THE SURFACE WIDTH - A STOCHASTIC ONE-DIMENSIONAL MAP
    BARABASI, AL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (17): : L1013 - L1019
  • [4] MULTIFRACTAL SPECTRA OF MULTI-AFFINE FUNCTIONS
    BARABASI, AL
    SZEPFALUSY, P
    VICSEK, T
    [J]. PHYSICA A, 1991, 178 (01): : 17 - 28
  • [5] MULTIFRACTALITY OF SELF-AFFINE FRACTALS
    BARABASI, AL
    VICSEK, T
    [J]. PHYSICAL REVIEW A, 1991, 44 (04): : 2730 - 2733
  • [6] SIMULATIONS OF KINETIC ROUGHENING WITH POWER-LAW NOISE ON THE CONNECTION MACHINE
    Bourbonnais, R.
    Herrmann, H. J.
    Vicsek, T.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1991, 2 (03): : 719 - 733
  • [7] SURFACE GROWTH WITH POWER-LAW NOISE IN 2+1 DIMENSIONS
    BOURBONNAIS, R
    KERTESZ, J
    WOLF, DE
    [J]. JOURNAL DE PHYSIQUE II, 1991, 1 (05): : 493 - 500
  • [8] BALLISTIC DEPOSITION WITH POWER-LAW NOISE - A VARIANT OF THE ZHANG MODEL
    BULDYREV, SV
    HAVLIN, S
    KERTESZ, J
    STANLEY, HE
    VICSEK, T
    [J]. PHYSICAL REVIEW A, 1991, 43 (12): : 7113 - 7116
  • [9] SCALING OF THE ACTIVE ZONE IN THE EDEN PROCESS ON PERCOLATION NETWORKS AND THE BALLISTIC DEPOSITION MODEL
    FAMILY, F
    VICSEK, T
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02): : L75 - L81
  • [10] Family F., 1991, DYNAMICS FRACTAL SUR