Non-Gaussian data expansion in the Earth Sciences

被引:182
作者
Journel, A. G. [1 ]
Alabert, F. [1 ]
机构
[1] Stanford Univ, Dept Appl Earth Sci, Stanford Ctr Reservoir Forecasting, Stanford, CA 94305 USA
关键词
D O I
10.1111/j.1365-3121.1989.tb00344.x
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
A formalism is proposed to generate alternative equiprobable images of an underlying population spatial distribution. The resulting images honour data values at their locations and reflect important characteristics of the data such as patterns of spatial connectivity of extreme-values. The formalism capitalizes on a coding of all information available into bits (0-l), which are then processed all together accounting for their patterns of correlation in space. Such common coding allows accounting for qualitative information, possibly of an interpretative nature, to complement the usually sparse hard data available in Earth Sciences applications. The approach proposed, although of a probabilistic nature, does not call for any Gaussian-type modelling or hypothesis.
引用
收藏
页码:123 / 134
页数:12
相关论文
共 17 条
[1]  
Abramovitz M, 1964, HDB MATH FUNCTIONS
[2]  
Alabert F.G, 1987, THESIS STANFORD U ST, P169
[3]  
Anderson TW., 1958, INTRO MULTIVARIATE S
[4]  
Devroye L., 1986, NONUNIFORM RANDOM VA
[5]  
Giordano R., 1985, 60 SPE ANN C LAS VEG
[7]   TEXTURAL FEATURES FOR IMAGE CLASSIFICATION [J].
HARALICK, RM ;
SHANMUGAM, K ;
DINSTEIN, I .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1973, SMC3 (06) :610-621
[8]  
Huijbregts Ch., 1978, MINING GEOSTATISTICS
[9]  
Jones D., 1979, ELEMENTARY INFORM TH, P137
[10]  
Journel A. G., 1986, P 19 APCOM S LITTL C, P15