A PRACTICAL METHOD FOR CALCULATING LARGEST LYAPUNOV EXPONENTS FROM SMALL DATA SETS

被引:2456
作者
ROSENSTEIN, MT [1 ]
COLLINS, JJ [1 ]
DE LUCA, CJ [1 ]
机构
[1] BOSTON UNIV, DEPT BIOMED ENGN, BOSTON, MA 02215 USA
关键词
D O I
10.1016/0167-2789(93)90009-P
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the largest Lyapunov exponent. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. We present a new method for calculating the largest Lyapunov exponent from an experimental time series. The method follows directly from the definition of the largest Lyapunov exponent and is accurate because it takes advantage of all the available data. We show that the algorithm is fast, easy to implement, and robust to changes in the following quantities: embedding dimension, size of data set, reconstruction delay, and noise level. Furthermore, one may use the algorithm to calculate simultaneously the correlation dimension. Thus, one sequence of computations will yield an estimate of both the level of chaos and the system complexity.
引用
收藏
页码:117 / 134
页数:18
相关论文
共 42 条
[1]   PREDICTION IN CHAOTIC NONLINEAR-SYSTEMS - METHODS FOR TIME-SERIES WITH BROAD-BAND FOURIER SPECTRA [J].
ABARBANEL, HDI ;
BROWN, R ;
KADTKE, JB .
PHYSICAL REVIEW A, 1990, 41 (04) :1782-1807
[2]   CALCULATING THE DIMENSION OF ATTRACTORS FROM SMALL DATA SETS [J].
ABRAHAM, NB ;
ALBANO, AM ;
DAS, B ;
DEGUZMAN, G ;
YONG, S ;
GIOGGIA, RS ;
PUCCIONI, GP ;
TREDICCE, JR .
PHYSICS LETTERS A, 1986, 114 (05) :217-221
[3]   USING HIGHER-ORDER CORRELATIONS TO DEFINE AN EMBEDDING WINDOW [J].
ALBANO, AM ;
PASSAMANTE, A ;
FARRELL, ME .
PHYSICA D, 1991, 54 (1-2) :85-97
[4]   SINGULAR-VALUE DECOMPOSITION AND THE GRASSBERGER-PROCACCIA ALGORITHM [J].
ALBANO, AM ;
MUENCH, J ;
SCHWARTZ, C ;
MEES, AI ;
RAPP, PE .
PHYSICAL REVIEW A, 1988, 38 (06) :3017-3026
[5]   KOLMOGOROV ENTROPY OF A DYNAMICAL SYSTEM WITH AN INCREASING NUMBER OF DEGREES OF FREEDOM [J].
BENETTIN, G ;
FROESCHLE, C ;
SCHEIDECKER, JP .
PHYSICAL REVIEW A, 1979, 19 (06) :2454-2460
[6]  
BENNETIN G, 1976, PHYS REV A, V14, P2338
[7]   AN IMPROVED METHOD FOR ESTIMATING LIAPUNOV EXPONENTS OF CHAOTIC TIME-SERIES [J].
BRIGGS, K .
PHYSICS LETTERS A, 1990, 151 (1-2) :27-32
[8]   EXTRACTING QUALITATIVE DYNAMICS FROM EXPERIMENTAL-DATA [J].
BROOMHEAD, DS ;
KING, GP .
PHYSICA D, 1986, 20 (2-3) :217-236
[9]   COMPUTING THE LYAPUNOV SPECTRUM OF A DYNAMIC SYSTEM FROM AN OBSERVED TIME-SERIES [J].
BROWN, R ;
BRYANT, P ;
ABARBANEL, HDI .
PHYSICAL REVIEW A, 1991, 43 (06) :2787-2806
[10]   NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES [J].
CASDAGLI, M .
PHYSICA D, 1989, 35 (03) :335-356