A NATURAL AND RIGID MODEL OF QUANTUM GROUPS

被引:8
作者
BONNEAU, P
FLATO, M
PINCZON, G
机构
[1] Physique-Mathématique, Université de Bourgogne, Dijon Cedex, 21004
关键词
D O I
10.1007/BF00402377
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a natural (Frechet-Hopf) algebra A containing all generic Jimbo algebras U(t)(sl(2)) (as dense subalgebras). The Hopf structures on A extend (in a continuous way) the Hopf structures of generic U(t)(sl(2)). The Universal R-matrices converge in A x A. Using the (topological) dual of A, we recover the formalism of functions of noncommutative arguments. In addition, we show that all these Hopf structures on A are isomorphic (as bialgebras), and rigid in the category of bialgebras.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 10 条
[1]  
DECONCINI C, 1991, PROGR MATH, P471
[2]  
Drinfeld V.G., 1989, LENINGR MATH J, V1, p114?148
[3]  
DRINFELD VG, 1986, P INT C MATH BERKELE, V1, P798
[4]   ON DEFORMATION OF RINGS + ALGEBRAS [J].
GERSTENHABER, M .
ANNALS OF MATHEMATICS, 1964, 79 (01) :59-&
[5]   BIALGEBRA COHOMOLOGY, DEFORMATIONS, AND QUANTUM GROUPS [J].
GERSTENHABER, M ;
SCHACK, SD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (01) :478-481
[6]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69
[7]  
Kulish P. P., 1983, J SOVIET MATH, V23, P2435
[8]  
LANG S, 1969, ALGEBRA
[9]  
MANIN YI, 1988, PUBL CTR RECH MATH M
[10]  
SHNIDER S, 1991, CR ACAD SCI I-MATH, V312, P7