A LOWER BOUND FOR THE HEAT KERNEL

被引:156
作者
CHEEGER, J [1 ]
YAU, ST [1 ]
机构
[1] INST ADV STUDY,PRINCETON,NJ 08540
关键词
D O I
10.1002/cpa.3160340404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:465 / 480
页数:16
相关论文
共 16 条
[1]  
BESSE AL, 1978, ERG MATH, V93
[2]  
Bishop R.L, 1964, GEOMETRY MANIFOLDS
[3]   RELATION BETWEEN LAPLACIAN AND DIAMETER FOR MANIFOLDS OF NON-NEGATIVE CURVATURE [J].
CHEEGER, J .
ARCHIV DER MATHEMATIK, 1968, 19 (05) :558-&
[4]  
Cheeger J., 1972, J DIFFERENTIAL GEOM, V6, P119, DOI DOI 10.4310/JDG/1214430220
[5]  
CHEEGER J, DIFFRACTION WAVES CO
[6]  
CHEEGER J, 1980, P S PURE MATH AMS, P91
[7]   EIGENVALUE COMPARISON THEOREMS AND ITS GEOMETRIC APPLICATIONS [J].
CHEN, SY .
MATHEMATISCHE ZEITSCHRIFT, 1975, 143 (03) :289-297
[8]  
Debiard A., 1976, PUBL RES I MATH KYOT, V12, P391
[9]   THE HEAT EQUATION METHOD OF MILGRAM AND ROSENBLOOM FOR OPEN RIEMANNIAN MANIFOLDS [J].
GAFFNEY, MP .
ANNALS OF MATHEMATICS, 1954, 60 (03) :458-466
[10]  
MICHEL D, 1976, CR ACAD SCI A MATH, V282, P1007